ESP32-HUB75-MatrixPanel-DMA/examples/PIO_TestPatterns/src/main.cpp

456 lines
11 KiB
C++
Raw Normal View History

// How to use this library with a FM6126 panel, thanks goes to:
// https://github.com/hzeller/rpi-rgb-led-matrix/issues/746
2023-01-30 04:25:24 +01:00
//#ifdef IDF_BUILD
#include <stdio.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <driver/gpio.h>
#include "sdkconfig.h"
2023-01-30 04:25:24 +01:00
//#endif
2023-01-30 04:09:10 +01:00
#include <Arduino.h>
#include "xtensa/core-macros.h"
#ifdef VIRTUAL_PANE
#include <ESP32-VirtualMatrixPanel-I2S-DMA.h>
#else
#include <ESP32-HUB75-MatrixPanel-I2S-DMA.h>
#endif
#include "main.h"
// HUB75E pinout
// R1 | G1
// B1 | GND
// R2 | G2
// B2 | E
// A | B
// C | D
// CLK| LAT
// OE | GND
/* Default library pin configuration for the reference
you can redefine only ones you need later on object creation
#define R1 25
#define G1 26
#define BL1 27
#define R2 14
#define G2 12
#define BL2 13
#define CH_A 23
#define CH_B 19
#define CH_C 5
#define CH_D 17
#define CH_E -1 // assign to any available pin if using panels with 1/32 scan
#define CLK 16
#define LAT 4
#define OE 15
*/
// Configure for your panel(s) as appropriate!
#define PIN_E 32
#define PANEL_WIDTH 64
#define PANEL_HEIGHT 64 // Panel height of 64 will required PIN_E to be defined.
#ifdef VIRTUAL_PANE
#define PANELS_NUMBER 4 // Number of chained panels, if just a single panel, obviously set to 1
#else
#define PANELS_NUMBER 2 // Number of chained panels, if just a single panel, obviously set to 1
#endif
#define PANE_WIDTH PANEL_WIDTH * PANELS_NUMBER
#define PANE_HEIGHT PANEL_HEIGHT
#define NUM_LEDS PANE_WIDTH*PANE_HEIGHT
#ifdef VIRTUAL_PANE
#define NUM_ROWS 2 // Number of rows of chained INDIVIDUAL PANELS
#define NUM_COLS 2 // Number of INDIVIDUAL PANELS per ROW
#define PANEL_CHAIN NUM_ROWS*NUM_COLS // total number of panels chained one to another
// Change this to your needs, for details on VirtualPanel pls read the PDF!
#define SERPENT true
#define TOPDOWN false
#endif
#ifdef VIRTUAL_PANE
VirtualMatrixPanel *matrix = nullptr;
MatrixPanel_I2S_DMA *chain = nullptr;
#else
MatrixPanel_I2S_DMA *matrix = nullptr;
#endif
// patten change delay
#define PATTERN_DELAY 2000
uint16_t time_counter = 0, cycles = 0, fps = 0;
unsigned long fps_timer;
// gradient buffer
CRGB *ledbuff;
//
unsigned long t1, t2, s1=0, s2=0, s3=0;
uint32_t ccount1, ccount2;
uint8_t color1 = 0, color2 = 0, color3 = 0;
uint16_t x,y;
const char *str = "* ESP32 I2S DMA *";
void setup(){
Serial.begin(BAUD_RATE);
Serial.println("Starting pattern test...");
// redefine pins if required
//HUB75_I2S_CFG::i2s_pins _pins={R1, G1, BL1, R2, G2, BL2, CH_A, CH_B, CH_C, CH_D, CH_E, LAT, OE, CLK};
HUB75_I2S_CFG mxconfig(PANEL_WIDTH, PANEL_HEIGHT, PANELS_NUMBER);
mxconfig.gpio.e = PIN_E;
mxconfig.driver = HUB75_I2S_CFG::FM6126A; // for panels using FM6126A chips
#ifndef VIRTUAL_PANE
matrix = new MatrixPanel_I2S_DMA(mxconfig);
matrix->begin();
matrix->setBrightness8(255);
#else
chain = new MatrixPanel_I2S_DMA(mxconfig);
chain->begin();
chain->setBrightness8(255);
// create VirtualDisplay object based on our newly created dma_display object
matrix = new VirtualMatrixPanel((*chain), NUM_ROWS, NUM_COLS, PANEL_WIDTH, PANEL_HEIGHT, SERPENT, TOPDOWN);
#endif
ledbuff = (CRGB *)malloc(NUM_LEDS * sizeof(CRGB)); // allocate buffer for some tests
buffclear(ledbuff);
}
uint8_t wheelval = 0;
void loop(){
Serial.printf("Cycle: %d\n", ++cycles);
#ifndef NO_GFX
drawText(wheelval++);
#endif
Serial.print("Estimating clearScreen() - ");
ccount1 = XTHAL_GET_CCOUNT();
matrix->clearScreen();
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
Serial.printf("%d ticks\n", ccount1);
delay(PATTERN_DELAY);
/*
// Power supply tester
// slowly fills matrix with white, stressing PSU
for (int y=0; y!=PANE_HEIGHT; ++y){
for (int x=0; x!=PANE_WIDTH; ++x){
matrix->drawPixelRGB888(x, y, 255,255,255);
//matrix->drawPixelRGB888(x, y-1, 255,0,0); // pls, be gentle :)
delay(10);
}
}
delay(5000);
*/
#ifndef VIRTUAL_PANE
// simple solid colors
Serial.println("Fill screen: RED");
matrix->fillScreenRGB888(255, 0, 0);
delay(PATTERN_DELAY);
Serial.println("Fill screen: GREEN");
matrix->fillScreenRGB888(0, 255, 0);
delay(PATTERN_DELAY);
Serial.println("Fill screen: BLUE");
matrix->fillScreenRGB888(0, 0, 255);
delay(PATTERN_DELAY);
#endif
for (uint8_t i=5; i; --i){
Serial.print("Estimating single drawPixelRGB888(r, g, b) ticks: ");
color1 = random8();
ccount1 = XTHAL_GET_CCOUNT();
matrix->drawPixelRGB888(i,i, color1, color1, color1);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
Serial.printf("%d ticks\n", ccount1);
}
// Clearing CRGB ledbuff
Serial.print("Estimating ledbuff clear time: ");
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
buffclear(ledbuff);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n\n", t2, ccount1);
#ifndef VIRTUAL_PANE
// Bare fillscreen(r, g, b)
Serial.print("Estimating fillscreenRGB888(r, g, b) time: ");
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
matrix->fillScreenRGB888(64, 64, 64); // white
ccount2 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
s1+=t2;
Serial.printf("%lu us, avg: %lu, ccnt: %d\n", t2, s1/cycles, ccount2);
delay(PATTERN_DELAY);
#endif
Serial.print("Estimating full-screen fillrate with looped drawPixelRGB888(): ");
y = PANE_HEIGHT;
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
do {
--y;
uint16_t x = PANE_WIDTH;
do {
--x;
matrix->drawPixelRGB888( x, y, 0, 0, 0);
} while(x);
} while(y);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
// created random color gradient in ledbuff
uint8_t color1 = 0;
uint8_t color2 = random8();
uint8_t color3 = 0;
for (uint16_t i = 0; i<NUM_LEDS; ++i){
ledbuff[i].r=color1++;
ledbuff[i].g=color2;
if (i%PANE_WIDTH==0)
color3+=255/PANE_HEIGHT;
ledbuff[i].b=color3;
}
//
//
Serial.print("Estimating ledbuff-to-matrix fillrate with drawPixelRGB888(), time: ");
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
mxfill(ledbuff);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
s2+=t2;
Serial.printf("%lu us, avg: %lu, %d ticks:\n", t2, s2/cycles, ccount1);
delay(PATTERN_DELAY);
//
2023-01-30 03:25:59 +01:00
#ifndef NO_FAST_FUNCTIONS
// Fillrate for fillRect() function
Serial.print("Estimating fullscreen fillrate with fillRect() time: ");
t1 = micros();
matrix->fillRect(0, 0, PANE_WIDTH, PANE_HEIGHT, 0, 224, 0);
t2 = micros()-t1;
Serial.printf("%lu us\n", t2);
delay(PATTERN_DELAY);
Serial.print("Chessboard with fillRect(): "); // шахматка
matrix->fillScreen(0);
x =0, y = 0;
color1 = random8();
color2 = random8();
color3 = random8();
bool toggle=0;
t1 = micros();
do {
do{
matrix->fillRect(x, y, 8, 8, color1, color2, color3);
x+=16;
}while(x < PANE_WIDTH);
y+=8;
toggle = !toggle;
x = toggle ? 8 : 0;
}while(y < PANE_HEIGHT);
t2 = micros()-t1;
Serial.printf("%lu us\n", t2);
delay(PATTERN_DELAY);
#endif
// ======== V-Lines ==========
Serial.println("Estimating V-lines with drawPixelRGB888(): "); //
matrix->fillScreen(0);
color1 = random8();
color2 = random8();
x = y = 0;
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
do {
y=0;
do{
matrix->drawPixelRGB888(x, y, color1, color2, color3);
} while(++y != PANE_HEIGHT);
x+=2;
} while(x != PANE_WIDTH);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
2023-01-30 03:25:59 +01:00
#ifndef NO_FAST_FUNCTIONS
Serial.println("Estimating V-lines with vlineDMA(): "); //
matrix->fillScreen(0);
color2 = random8();
x = y = 0;
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
do {
matrix->drawFastVLine(x, y, PANE_HEIGHT, color1, color2, color3);
x+=2;
} while(x != PANE_WIDTH);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
Serial.println("Estimating V-lines with fillRect(): "); //
matrix->fillScreen(0);
color1 = random8();
color2 = random8();
x = y = 0;
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
do {
matrix->fillRect(x, y, 1, PANE_HEIGHT, color1, color2, color3);
x+=2;
} while(x != PANE_WIDTH);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
#endif
// ======== H-Lines ==========
Serial.println("Estimating H-lines with drawPixelRGB888(): "); //
matrix->fillScreen(0);
color2 = random8();
x = y = 0;
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
do {
x=0;
do{
matrix->drawPixelRGB888(x, y, color1, color2, color3);
} while(++x != PANE_WIDTH);
y+=2;
} while(y != PANE_HEIGHT);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
2023-01-30 03:25:59 +01:00
#ifndef NO_FAST_FUNCTIONS
Serial.println("Estimating H-lines with hlineDMA(): ");
matrix->fillScreen(0);
color2 = random8();
color3 = random8();
x = y = 0;
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
do {
matrix->drawFastHLine(x, y, PANE_WIDTH, color1, color2, color3);
y+=2;
} while(y != PANE_HEIGHT);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
Serial.println("Estimating H-lines with fillRect(): "); //
matrix->fillScreen(0);
color2 = random8();
color3 = random8();
x = y = 0;
t1 = micros();
ccount1 = XTHAL_GET_CCOUNT();
do {
matrix->fillRect(x, y, PANE_WIDTH, 1, color1, color2, color3);
y+=2;
} while(y != PANE_HEIGHT);
ccount1 = XTHAL_GET_CCOUNT() - ccount1;
t2 = micros()-t1;
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
#endif
Serial.println("\n====\n");
// take a rest for a while
delay(10000);
}
void buffclear(CRGB *buf){
memset(buf, 0x00, NUM_LEDS * sizeof(CRGB)); // flush buffer to black
}
void IRAM_ATTR mxfill(CRGB *leds){
uint16_t y = PANE_HEIGHT;
do {
--y;
uint16_t x = PANE_WIDTH;
do {
--x;
uint16_t _pixel = y * PANE_WIDTH + x;
matrix->drawPixelRGB888( x, y, leds[_pixel].r, leds[_pixel].g, leds[_pixel].b);
} while(x);
} while(y);
}
//
/**
2021-10-16 16:00:43 +02:00
* The one for 256+ matrices
* otherwise this:
* for (uint8_t i = 0; i < MATRIX_WIDTH; i++) {}
* turns into an infinite loop
*/
uint16_t XY16( uint16_t x, uint16_t y)
{
if (x<PANE_WIDTH && y < PANE_HEIGHT){
return (y * PANE_WIDTH) + x;
} else {
return 0;
}
}
#ifdef NO_GFX
void drawText(int colorWheelOffset){}
#else
void drawText(int colorWheelOffset){
// draw some text
matrix->setTextSize(1); // size 1 == 8 pixels high
matrix->setTextWrap(false); // Don't wrap at end of line - will do ourselves
matrix->setCursor(5, 5); // start at top left, with 5,5 pixel of spacing
uint8_t w = 0;
for (w=0; w<strlen(str); w++) {
matrix->setTextColor(colorWheel((w*32)+colorWheelOffset));
matrix->print(str[w]);
}
}
#endif
uint16_t colorWheel(uint8_t pos) {
if(pos < 85) {
return matrix->color565(pos * 3, 255 - pos * 3, 0);
} else if(pos < 170) {
pos -= 85;
return matrix->color565(255 - pos * 3, 0, pos * 3);
} else {
pos -= 170;
return matrix->color565(0, pos * 3, 255 - pos * 3);
}
}