ESP32-HUB75-MatrixPanel-DMA/examples/One_Eighth_1_8_ScanPanel/OneEighthScanMatrixPanel.h

285 lines
8.9 KiB
C
Raw Normal View History

2021-10-10 20:06:11 +02:00
#ifndef _ESP32_ONE_EIGTH_MATRIX_PANEL_I2S_DMA
#define _ESP32_ONE_EIGTH_MATRIX_PANEL_I2S_DMA
#include "ESP32-HUB75-MatrixPanel-I2S-DMA.h"
struct VirtualCoords {
int16_t x;
int16_t y;
};
#ifdef USE_GFX_ROOT
class OneEighthMatrixPanel : public GFX
#elif !defined NO_GFX
class OneEighthMatrixPanel : public Adafruit_GFX
#else
class OneEighthMatrixPanel
#endif
{
public:
int16_t virtualResX;
int16_t virtualResY;
int16_t vmodule_rows;
int16_t vmodule_cols;
int16_t panelResX;
int16_t panelResY;
MatrixPanel_I2S_DMA *display;
OneEighthMatrixPanel(MatrixPanel_I2S_DMA &disp, int _vmodule_rows, int _vmodule_cols, int _panelResX, int _panelResY, bool serpentine_chain = true, bool top_down_chain = false)
#ifdef USE_GFX_ROOT
: GFX(_vmodule_cols*_panelResX, _vmodule_rows*_panelResY)
#elif !defined NO_GFX
: Adafruit_GFX(_vmodule_cols*_panelResX, _vmodule_rows*_panelResY)
#endif
{
this->display = &disp;
panelResX = _panelResX;
panelResY = _panelResY;
vmodule_rows = _vmodule_rows;
vmodule_cols = _vmodule_cols;
virtualResX = vmodule_cols*_panelResX;
virtualResY = vmodule_rows*_panelResY;
/* Virtual Display width() and height() will return a real-world value. For example:
* Virtual Display width: 128
* Virtual Display height: 64
*
* So, not values that at 0 to X-1
*/
_s_chain_party = serpentine_chain; // serpentine, or 'S' chain?
_chain_top_down= top_down_chain;
coords.x = coords.y = -1; // By default use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer
}
VirtualCoords getCoords(int16_t x, int16_t y);
// equivalent methods of the matrix library so it can be just swapped out.
virtual void drawPixel(int16_t x, int16_t y, uint16_t color);
virtual void fillScreen(uint16_t color); // overwrite adafruit implementation
void clearScreen() {
display->clearScreen();
}
void drawPixelRGB888(int16_t x, int16_t y, uint8_t r, uint8_t g, uint8_t b);
void drawIcon (int *ico, int16_t x, int16_t y, int16_t icon_cols, int16_t icon_rows);
uint16_t color444(uint8_t r, uint8_t g, uint8_t b) {
return display->color444(r, g, b);
}
uint16_t color565(uint8_t r, uint8_t g, uint8_t b) {
return display->color565(r, g, b);
}
uint16_t color333(uint8_t r, uint8_t g, uint8_t b) {
return display->color333(r, g, b);
}
void flipDMABuffer() { display->flipDMABuffer(); }
// Rotate display
inline void setRotate(bool rotate);
private:
VirtualCoords coords;
bool _s_chain_party = true; // Are we chained? Ain't no party like a...
bool _chain_top_down = false; // is the ESP at the top or bottom of the matrix of devices?
bool _rotate = false;
}; // end Class header
/**
* Calculate virtual->real co-ordinate mapping to underlying single chain of panels connected to ESP32.
* Then do further calculations for 1/8 scan panel.
* Updates the private class member variable 'coords', so no need to use the return value.
* Not thread safe, but not a concern for ESP32 sketch anyway... I think.
*/
inline VirtualCoords OneEighthMatrixPanel::getCoords(int16_t x, int16_t y) {
coords.x = coords.y = -1; // By defalt use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer
// Check if virtual work co-ordinates are outside the virtual display resolution space. This does NOT check
// against the physical real-world DMA matrix resolution / setup configured, that is used to actually output
// the electrical pulse to the panel.
if (x < 0 || x >= width() || y < 0 || y >= height() ) { // Co-ordinates go from 0 to X-1 remember! width() and height() are out of range!
//Serial.printf("OneEighthMatrixPanel::getCoords(): Invalid virtual display coordinate. x,y: %d, %d\r\n", x, y);
return coords;
}
// We want to rotate?
if (_rotate){
uint16_t temp_x=x;
x=y;
y=virtualResY-1-temp_x;
}
uint8_t row = (y / panelResY) + 1; //a non indexed 0 row number
uint8_t col = (x / panelResX) + 1; //a non indexed 0 row number
if( ( _s_chain_party && !_chain_top_down && (row % 2 == 0) ) // serpentine vertically stacked chain starting from bottom row (i.e. ESP closest to ground), upwards
||
( _s_chain_party && _chain_top_down && (row % 2 != 0) ) // serpentine vertically stacked chain starting from the sky downwards
)
{
// First portion gets you to the correct offset for the row you need
// Second portion inverts the x on the row
coords.x = ((y / panelResY) * (virtualResX)) + (virtualResX - x) - 1;
// inverts the y the row
coords.y = panelResY - 1 - (y % panelResY);
}
else
{
// Normal chain pixel co-ordinate
coords.x = x + ((y / panelResY) * (virtualResX)) ;
coords.y = y % panelResY;
}
/* *******
* START: 1/8 Scan Panel Pixel Re-Mapping
*
* We have calculated the x, y co-ordinates as if we have a chain of standard panels this library is designed
* for, this being 1/8 or 1/16 scan panels. We have to do some further hacking to convert co-ords to the
* double length and 1/2 physical dma output length that is required for these panels to work electronically.
*/
// 1/8 Scan Panel - Is the final x-coord on the 1st or 3rd, 1/4ths (8 pixel 'blocks') of the panel (i.e. Row 0-7 or 17-24) ?
// Double the length of the x-coord if required
2021-10-10 23:39:28 +02:00
if ( ((coords.y /8) % 2) == 0) { // returns true/1 for the 1st and 3rd 8-pixel 1/4th of a 32px high panel
2021-10-11 18:43:46 +02:00
coords.x += (panelResX);
2021-10-10 20:06:11 +02:00
}
2021-10-10 23:59:57 +02:00
// Half the y coord.
2021-10-11 00:03:37 +02:00
coords.y = (y % 8);
if ( y >= panelResY/2 ) coords.y +=8;
2021-10-11 18:43:46 +02:00
// Push all the pixels across a bit more if we're on another column or row
if (row*col > 1)
{
coords.x += ((panelResX)*2*(col*row))-1;
}
2021-10-10 23:59:57 +02:00
2021-10-10 20:06:11 +02:00
/*
* END: 1/8 Scan Panel Pixel Re-Mapping
* *******
*/
// Reverse co-ordinates if panel chain from ESP starts from the TOP RIGHT
2021-10-10 23:03:49 +02:00
/*
2021-10-10 20:06:11 +02:00
if (_chain_top_down)
{
2021-10-10 22:43:56 +02:00
coords.x = (panelResX * vmodule_rows * vmodule_cols - 1) - coords.x;
2021-10-10 20:52:32 +02:00
coords.y = (panelResY-1) - coords.y;
2021-10-10 23:03:49 +02:00
}
*/
2021-10-10 20:06:11 +02:00
return coords;
}
inline void OneEighthMatrixPanel::drawPixel(int16_t x, int16_t y, uint16_t color)
{
//VirtualCoords coords = getCoords(x, y);
getCoords(x, y);
this->display->drawPixel(coords.x, coords.y, color);
}
inline void OneEighthMatrixPanel::fillScreen(uint16_t color) // adafruit virtual void override
{
// No need to map this.
this->display->fillScreen(color);
}
inline void OneEighthMatrixPanel::drawPixelRGB888(int16_t x, int16_t y, uint8_t r, uint8_t g, uint8_t b)
{
//VirtualCoords coords = getCoords(x, y);
getCoords(x, y);
this->display->drawPixelRGB888( coords.x, coords.y, r, g, b);
}
inline void OneEighthMatrixPanel::setRotate(bool rotate) {
_rotate=rotate;
// We don't support rotation by degrees.
if (rotate) { setRotation(1); } else { setRotation(0); }
}
// need to recreate this one, as it wouldnt work to just map where it starts.
inline void OneEighthMatrixPanel::drawIcon (int *ico, int16_t x, int16_t y, int16_t icon_cols, int16_t icon_rows) {
}
2021-10-10 23:59:57 +02:00
#endif
/*
// http://cpp.sh/6skpy
// Example program
#include <iostream>
#include <string>
int main()
{
for (int i = 0; i < 32; i++)
{
int x = 0;
int y = i;
if ( ((y /8) % 2) == 0) { // returns true/1 for the 1st and 3rd 8-pixel 1/4th of a 32px high panel
x += 64;
}
y = (i % 8);
if ( i >= 32/2 ) y +=8;
std::cout << "For input y = " << i << " mapping to y: " << y << " and x " << x << " \n";
}
}
For input y = 0 mapping to y: 0 and x 64
For input y = 1 mapping to y: 1 and x 64
For input y = 2 mapping to y: 2 and x 64
For input y = 3 mapping to y: 3 and x 64
For input y = 4 mapping to y: 4 and x 64
For input y = 5 mapping to y: 5 and x 64
For input y = 6 mapping to y: 6 and x 64
For input y = 7 mapping to y: 7 and x 64
For input y = 8 mapping to y: 0 and x 0
For input y = 9 mapping to y: 1 and x 0
For input y = 10 mapping to y: 2 and x 0
For input y = 11 mapping to y: 3 and x 0
For input y = 12 mapping to y: 4 and x 0
For input y = 13 mapping to y: 5 and x 0
For input y = 14 mapping to y: 6 and x 0
For input y = 15 mapping to y: 7 and x 0
For input y = 16 mapping to y: 8 and x 64
For input y = 17 mapping to y: 9 and x 64
For input y = 18 mapping to y: 10 and x 64
For input y = 19 mapping to y: 11 and x 64
For input y = 20 mapping to y: 12 and x 64
For input y = 21 mapping to y: 13 and x 64
For input y = 22 mapping to y: 14 and x 64
For input y = 23 mapping to y: 15 and x 64
For input y = 24 mapping to y: 8 and x 0
For input y = 25 mapping to y: 9 and x 0
For input y = 26 mapping to y: 10 and x 0
For input y = 27 mapping to y: 11 and x 0
For input y = 28 mapping to y: 12 and x 0
For input y = 29 mapping to y: 13 and x 0
For input y = 30 mapping to y: 14 and x 0
For input y = 31 mapping to y: 15 and x 0
*/