2021-02-10 16:49:19 +01:00
# include <Arduino.h>
2020-11-28 09:39:35 +01:00
# include "ESP32-HUB75-MatrixPanel-I2S-DMA.h"
2021-02-10 16:49:19 +01:00
//#include "xtensa/core-macros.h"
2018-10-23 02:00:47 +02:00
// Credits: Louis Beaudoin <https://github.com/pixelmatix/SmartMatrix/tree/teensylc>
// and Sprite_TM: https://www.esp32.com/viewtopic.php?f=17&t=3188 and https://www.esp32.com/viewtopic.php?f=13&t=3256
2020-07-29 09:47:54 +02:00
/*
This is example code to driver a p3 ( 2121 ) 64 * 32 - style RGB LED display . These types of displays do not have memory and need to be refreshed
continuously . The display has 2 RGB inputs , 4 inputs to select the active line , a pixel clock input , a latch enable input and an output - enable
input . The display can be seen as 2 64 x16 displays consisting of the upper half and the lower half of the display . Each half has a separate
RGB pixel input , the rest of the inputs are shared .
Each display half can only show one line of RGB pixels at a time : to do this , the RGB data for the line is input by setting the RGB input pins
to the desired value for the first pixel , giving the display a clock pulse , setting the RGB input pins to the desired value for the second pixel ,
giving a clock pulse , etc . Do this 64 times to clock in an entire row . The pixels will not be displayed yet : until the latch input is made high ,
the display will still send out the previously clocked in line . Pulsing the latch input high will replace the displayed data with the data just
clocked in .
The 4 line select inputs select where the currently active line is displayed : when provided with a binary number ( 0 - 15 ) , the latched pixel data
will immediately appear on this line . Note : While clocking in data for a line , the * previous * line is still displayed , and these lines should
be set to the value to reflect the position the * previous * line is supposed to be on .
Finally , the screen has an OE input , which is used to disable the LEDs when latching new data and changing the state of the line select inputs :
2020-07-30 00:11:03 +02:00
doing so hides any artefacts that appear at this time . The OE line is also used to dim the display by only turning it on for a limited time every
2020-07-29 09:47:54 +02:00
line .
All in all , an image can be displayed by ' scanning ' the display , say , 100 times per second . The slowness of the human eye hides the fact that
only one line is showed at a time , and the display looks like every pixel is driven at the same time .
Now , the RGB inputs for these types of displays are digital , meaning each red , green and blue subpixel can only be on or off . This leads to a
color palette of 8 pixels , not enough to display nice pictures . To get around this , we use binary code modulation .
Binary code modulation is somewhat like PWM , but easier to implement in our case . First , we define the time we would refresh the display without
binary code modulation as the ' frame time ' . For , say , a four - bit binary code modulation , the frame time is divided into 15 ticks of equal length .
We also define 4 subframes ( 0 to 3 ) , defining which LEDs are on and which LEDs are off during that subframe . ( Subframes are the same as a
normal frame in non - binary - coded - modulation mode , but are showed faster . ) From our ( non - monochrome ) input image , we take the ( 8 - bit : bit 7
to bit 0 ) RGB pixel values . If the pixel values have bit 7 set , we turn the corresponding LED on in subframe 3. If they have bit 6 set ,
we turn on the corresponding LED in subframe 2 , if bit 5 is set subframe 1 , if bit 4 is set in subframe 0.
Now , in order to ( on average within a frame ) turn a LED on for the time specified in the pixel value in the input data , we need to weigh the
subframes . We have 15 pixels : if we show subframe 3 for 8 of them , subframe 2 for 4 of them , subframe 1 for 2 of them and subframe 1 for 1 of
them , this ' automatically ' happens . ( We also distribute the subframes evenly over the ticks , which reduces flicker . )
In this code , we use the I2S peripheral in parallel mode to achieve this . Essentially , first we allocate memory for all subframes . This memory
contains a sequence of all the signals ( 2 xRGB , line select , latch enable , output enable ) that need to be sent to the display for that subframe .
Then we ask the I2S - parallel driver to set up a DMA chain so the subframes are sent out in a sequence that satisfies the requirement that
subframe x has to be sent out for ( 2 ^ x ) ticks . Finally , we fill the subframes with image data .
2020-07-30 00:11:03 +02:00
We use a front buffer / back buffer technique here to make sure the display is refreshed in one go and drawing artifacts do not reach the display .
2020-07-29 09:47:54 +02:00
In practice , for small displays this is not really necessarily .
*/
2020-08-11 21:44:47 +02:00
// For development testing only
//#define IGNORE_REFRESH_RATE 1
2021-02-10 16:49:19 +01:00
# define val2PWM(val) { lumConvTab[(uint8_t)val]; }
// macro's to calculate sizes of a single buffer (double buffer takes twice as this)
# define rowBitStructBuffSize sizeof(ESP32_I2S_DMA_STORAGE_TYPE) * (PIXELS_PER_ROW + CLKS_DURING_LATCH) * PIXEL_COLOR_DEPTH_BITS
# define frameStructBuffSize ROWS_PER_FRAME * rowBitStructBuffSize
/* this replicates same function in rowBitStruct, but due to induced inlining it might be MUCH faster when used in tight loops
* while method from struct could be flushed out of instruction cache between loop cycles
* do NOT forget about buff_id param if using this
*/
# define getRowDataPtr(row, _dpth, buff_id) &(dma_buff.rowBits[row]->data[_dpth * dma_buff.rowBits[row]->width + buff_id*(dma_buff.rowBits[row]->width * dma_buff.rowBits[row]->color_depth)])
2020-08-11 21:44:47 +02:00
2020-11-28 10:45:30 +01:00
bool MatrixPanel_I2S_DMA : : allocateDMAmemory ( )
2018-10-23 02:00:47 +02:00
{
2020-07-29 09:47:54 +02:00
/***
* Step 1 : Look at the overall DMA capable memory for the DMA FRAMEBUFFER data only ( not the DMA linked list descriptors yet )
* and do some pre - checks .
*/
2021-02-10 16:49:19 +01:00
int _num_frame_buffers = ( m_cfg . double_buff ) ? 2 : 1 ;
size_t _frame_buffer_memory_required = frameStructBuffSize * _num_frame_buffers ;
2020-07-29 09:47:54 +02:00
size_t _dma_linked_list_memory_required = 0 ;
size_t _total_dma_capable_memory_reserved = 0 ;
2020-08-13 00:40:44 +02:00
// 1. Calculate the amount of DMA capable memory that's actually available
2020-07-29 09:47:54 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " Panel Width: %d pixels. \r \n " ) , PIXELS_PER_ROW ) ;
Serial . printf_P ( PSTR ( " Panel Height: %d pixels. \r \n " ) , m_cfg . mx_height ) ;
2020-07-29 09:47:54 +02:00
2021-02-10 16:49:19 +01:00
if ( m_cfg . double_buff ) {
Serial . println ( F ( " DOUBLE FRAME BUFFERS / DOUBLE BUFFERING IS ENABLED. DOUBLE THE RAM REQUIRED! " ) ) ;
2020-07-29 09:47:54 +02:00
}
2020-07-29 11:44:38 +02:00
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " DMA memory blocks available before any malloc's: " ) ) ;
2020-07-29 09:47:54 +02:00
heap_caps_print_heap_info ( MALLOC_CAP_DMA ) ;
2020-07-29 11:44:38 +02:00
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " We're going to need %d bytes of SRAM just for the frame buffer(s). \r \n " ) , _frame_buffer_memory_required ) ;
Serial . printf_P ( PSTR ( " The total amount of DMA capable SRAM memory is %d bytes. \r \n " ) , heap_caps_get_free_size ( MALLOC_CAP_DMA ) ) ;
Serial . printf_P ( PSTR ( " Largest DMA capable SRAM memory block is %d bytes. \r \n " ) , heap_caps_get_largest_free_block ( MALLOC_CAP_DMA ) ) ;
2020-08-13 00:40:44 +02:00
2020-07-29 09:47:54 +02:00
# endif
2020-08-13 00:40:44 +02:00
// Can we potentially fit the framebuffer into the DMA capable memory that's available?
if ( heap_caps_get_free_size ( MALLOC_CAP_DMA ) < _frame_buffer_memory_required ) {
2020-07-29 09:47:54 +02:00
2020-07-29 11:44:38 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " ######### Insufficient memory for requested resolution. Reduce MATRIX_COLOR_DEPTH and try again. \r \n \t Additional %d bytes of memory required. \r \n \r \n " ) , ( _frame_buffer_memory_required - heap_caps_get_free_size ( MALLOC_CAP_DMA ) ) ) ;
2020-07-29 11:44:38 +02:00
# endif
return false ;
}
2020-08-13 00:40:44 +02:00
// Alright, theoretically we should be OK, so let us do this, so
// lets allocate a chunk of memory for each row (a row could span multiple panels if chaining is in place)
2021-02-10 16:49:19 +01:00
dma_buff . rowBits . reserve ( ROWS_PER_FRAME ) ;
// iterate through number of rows
for ( int malloc_num = 0 ; malloc_num < ROWS_PER_FRAME ; + + malloc_num )
2020-08-13 00:40:44 +02:00
{
2021-02-10 16:49:19 +01:00
auto ptr = std : : make_shared < rowBitStruct > ( PIXELS_PER_ROW , PIXEL_COLOR_DEPTH_BITS , m_cfg . double_buff ) ;
if ( ptr - > data = = nullptr ) {
# if SERIAL_DEBUG
Serial . printf_P ( PSTR ( " ERROR: Couldn't malloc rowBitStruct %d! Critical fail. \r \n " ) , malloc_num ) ;
# endif
return false ;
// TODO: should we release all previous rowBitStructs here???
}
dma_buff . rowBits . emplace_back ( ptr ) ; // save new rowBitStruct into rows vector
+ + dma_buff . rows ;
# if SERIAL_DEBUG
Serial . printf_P ( PSTR ( " Malloc'ing %d bytes of memory @ address %ud for frame row %d. \r \n " ) , ptr - > size ( ) * _num_frame_buffers , ( unsigned int ) ptr - > getDataPtr ( ) , malloc_num ) ;
# endif
2020-08-13 00:40:44 +02:00
}
2020-07-29 11:44:38 +02:00
_total_dma_capable_memory_reserved + = _frame_buffer_memory_required ;
2020-07-29 09:47:54 +02:00
/***
* Step 2 : Calculate the amount of memory required for the DMA engine ' s linked list descriptors .
* Credit to SmartMatrix for this stuff .
*/
2020-08-11 21:44:47 +02:00
2020-07-29 09:47:54 +02:00
2021-02-10 16:49:19 +01:00
// Calculate what colour depth is actually possible based on memory available vs. required DMA linked-list descriptors.
2020-07-29 09:47:54 +02:00
// aka. Calculate the lowest LSBMSB_TRANSITION_BIT value that will fit in memory
int numDMAdescriptorsPerRow = 0 ;
2018-10-23 02:00:47 +02:00
lsbMsbTransitionBit = 0 ;
2020-08-11 21:44:47 +02:00
2020-08-13 13:16:17 +02:00
2018-10-23 02:00:47 +02:00
while ( 1 ) {
2020-07-29 09:47:54 +02:00
numDMAdescriptorsPerRow = 1 ;
for ( int i = lsbMsbTransitionBit + 1 ; i < PIXEL_COLOR_DEPTH_BITS ; i + + ) {
2020-08-11 21:44:47 +02:00
numDMAdescriptorsPerRow + = ( 1 < < ( i - lsbMsbTransitionBit - 1 ) ) ;
2018-10-23 02:00:47 +02:00
}
2021-02-10 16:49:19 +01:00
size_t ramrequired = numDMAdescriptorsPerRow * ROWS_PER_FRAME * _num_frame_buffers * sizeof ( lldesc_t ) ;
size_t largestblockfree = heap_caps_get_largest_free_block ( MALLOC_CAP_DMA ) ;
2020-07-29 09:47:54 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " lsbMsbTransitionBit of %d with %d DMA descriptors per frame row, requires %d bytes RAM, %d available, leaving %d free: \r \n " ) , lsbMsbTransitionBit , numDMAdescriptorsPerRow , ramrequired , largestblockfree , largestblockfree - ramrequired ) ;
2020-07-29 09:47:54 +02:00
# endif
2018-10-23 02:00:47 +02:00
2020-07-29 09:47:54 +02:00
if ( ramrequired < largestblockfree )
2018-10-23 02:00:47 +02:00
break ;
2020-07-29 09:47:54 +02:00
if ( lsbMsbTransitionBit < PIXEL_COLOR_DEPTH_BITS - 1 )
2018-10-23 02:00:47 +02:00
lsbMsbTransitionBit + + ;
else
break ;
}
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " Raised lsbMsbTransitionBit to %d/%d to fit in remaining RAM \r \n " ) , lsbMsbTransitionBit , PIXEL_COLOR_DEPTH_BITS - 1 ) ;
2018-10-23 02:00:47 +02:00
2020-08-13 13:16:17 +02:00
# ifndef IGNORE_REFRESH_RATE
2018-10-23 02:00:47 +02:00
// calculate the lowest LSBMSB_TRANSITION_BIT value that will fit in memory that will meet or exceed the configured refresh rate
2020-08-11 21:44:47 +02:00
while ( 1 ) {
2021-02-10 16:49:19 +01:00
int psPerClock = 1000000000000UL / m_cfg . i2sspeed ;
2020-07-29 09:47:54 +02:00
int nsPerLatch = ( ( PIXELS_PER_ROW + CLKS_DURING_LATCH ) * psPerClock ) / 1000 ;
2018-10-23 02:00:47 +02:00
// add time to shift out LSBs + LSB-MSB transition bit - this ignores fractions...
2020-07-29 09:47:54 +02:00
int nsPerRow = PIXEL_COLOR_DEPTH_BITS * nsPerLatch ;
2018-10-23 02:00:47 +02:00
// add time to shift out MSBs
2020-07-29 09:47:54 +02:00
for ( int i = lsbMsbTransitionBit + 1 ; i < PIXEL_COLOR_DEPTH_BITS ; i + + )
nsPerRow + = ( 1 < < ( i - lsbMsbTransitionBit - 1 ) ) * ( PIXEL_COLOR_DEPTH_BITS - i ) * nsPerLatch ;
2018-10-23 02:00:47 +02:00
int nsPerFrame = nsPerRow * ROWS_PER_FRAME ;
int actualRefreshRate = 1000000000UL / ( nsPerFrame ) ;
2020-07-29 09:47:54 +02:00
calculated_refresh_rate = actualRefreshRate ;
2018-10-23 02:00:47 +02:00
2020-07-30 10:01:54 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " lsbMsbTransitionBit of %d gives %d Hz refresh: \r \n " ) , lsbMsbTransitionBit , actualRefreshRate ) ;
2020-08-02 23:03:16 +02:00
# endif
2018-10-23 02:00:47 +02:00
2019-07-29 14:45:06 +02:00
if ( actualRefreshRate > min_refresh_rate ) // HACK Hard Coded: 100
2018-10-23 02:00:47 +02:00
break ;
2020-07-29 09:47:54 +02:00
if ( lsbMsbTransitionBit < PIXEL_COLOR_DEPTH_BITS - 1 )
2018-10-23 02:00:47 +02:00
lsbMsbTransitionBit + + ;
else
break ;
}
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " Raised lsbMsbTransitionBit to %d/%d to meet minimum refresh rate \r \n " ) , lsbMsbTransitionBit , PIXEL_COLOR_DEPTH_BITS - 1 ) ;
2020-08-13 13:16:17 +02:00
# endif
2018-10-23 02:00:47 +02:00
2020-08-02 23:03:16 +02:00
/***
* Step 2 a : lsbMsbTransition bit is now finalised - recalculate the DMA descriptor count required , which is used for
* memory allocation of the DMA linked list memory structure .
*/
2020-07-29 09:47:54 +02:00
numDMAdescriptorsPerRow = 1 ;
for ( int i = lsbMsbTransitionBit + 1 ; i < PIXEL_COLOR_DEPTH_BITS ; i + + ) {
2020-08-11 21:44:47 +02:00
numDMAdescriptorsPerRow + = ( 1 < < ( i - lsbMsbTransitionBit - 1 ) ) ;
2018-10-23 02:00:47 +02:00
}
2020-12-21 00:42:55 +01:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " Recalculated number of DMA descriptors per row: %d \n " ) , numDMAdescriptorsPerRow ) ;
2020-12-21 00:42:55 +01:00
# endif
2018-10-23 02:00:47 +02:00
2020-08-02 23:03:16 +02:00
// Refer to 'DMA_LL_PAYLOAD_SPLIT' code in configureDMA() below to understand why this exists.
2021-02-10 16:49:19 +01:00
// numDMAdescriptorsPerRow is also used to calculate descount which is super important in i2s_parallel_config_t SoC DMA setup.
if ( rowBitStructBuffSize > DMA_MAX ) {
2020-08-02 23:03:16 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " rowColorDepthStruct struct is too large, split DMA payload required. Adding %d DMA descriptors \n " ) , PIXEL_COLOR_DEPTH_BITS - 1 ) ;
2020-12-21 00:42:55 +01:00
# endif
2020-08-02 23:03:16 +02:00
numDMAdescriptorsPerRow + = PIXEL_COLOR_DEPTH_BITS - 1 ;
2021-02-10 16:49:19 +01:00
// Note: If numDMAdescriptorsPerRow is even just one descriptor too large, DMA linked list will not correctly loop.
2020-08-02 23:03:16 +02:00
}
2020-07-29 09:47:54 +02:00
/***
* Step 3 : Allocate memory for DMA linked list , linking up each framebuffer row in sequence for GPIO output .
*/
_dma_linked_list_memory_required = numDMAdescriptorsPerRow * ROWS_PER_FRAME * _num_frame_buffers * sizeof ( lldesc_t ) ;
2021-02-10 16:49:19 +01:00
# if SERIAL_DEBUG
Serial . printf_P ( PSTR ( " Descriptors for lsbMsbTransitionBit of %d/%d with %d frame rows require %d bytes of DMA RAM with %d numDMAdescriptorsPerRow. \r \n " ) , lsbMsbTransitionBit , PIXEL_COLOR_DEPTH_BITS - 1 , ROWS_PER_FRAME , _dma_linked_list_memory_required , numDMAdescriptorsPerRow ) ;
2020-07-30 10:01:54 +02:00
# endif
2020-07-29 09:47:54 +02:00
_total_dma_capable_memory_reserved + = _dma_linked_list_memory_required ;
// Do a final check to see if we have enough space for the additional DMA linked list descriptors that will be required to link it all up!
if ( _dma_linked_list_memory_required > heap_caps_get_largest_free_block ( MALLOC_CAP_DMA ) ) {
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " ERROR: Not enough SRAM left over for DMA linked-list descriptor memory reservation! Oh so close! \r \n " ) ) ;
2020-07-30 10:01:54 +02:00
2020-07-29 09:47:54 +02:00
return false ;
} // linked list descriptors memory check
2018-10-23 02:00:47 +02:00
// malloc the DMA linked list descriptors that i2s_parallel will need
2020-07-29 09:47:54 +02:00
desccount = numDMAdescriptorsPerRow * ROWS_PER_FRAME ;
//lldesc_t * dmadesc_a = (lldesc_t *)heap_caps_malloc(desccount * sizeof(lldesc_t), MALLOC_CAP_DMA);
dmadesc_a = ( lldesc_t * ) heap_caps_malloc ( desccount * sizeof ( lldesc_t ) , MALLOC_CAP_DMA ) ;
assert ( " Can't allocate descriptor framebuffer a " ) ;
2018-10-23 02:00:47 +02:00
if ( ! dmadesc_a ) {
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " ERROR: Could not malloc descriptor framebuffer a. " ) ) ;
2020-07-29 09:47:54 +02:00
return false ;
2018-10-23 02:00:47 +02:00
}
2021-02-10 16:49:19 +01:00
if ( m_cfg . double_buff ) // reserve space for second framebuffer linked list
2020-07-29 09:47:54 +02:00
{
//lldesc_t * dmadesc_b = (lldesc_t *)heap_caps_malloc(desccount * sizeof(lldesc_t), MALLOC_CAP_DMA);
dmadesc_b = ( lldesc_t * ) heap_caps_malloc ( desccount * sizeof ( lldesc_t ) , MALLOC_CAP_DMA ) ;
assert ( " Could not malloc descriptor framebuffer b. " ) ;
if ( ! dmadesc_b ) {
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " ERROR: Could not malloc descriptor framebuffer b. " ) ) ;
2020-07-29 09:47:54 +02:00
return false ;
}
2018-10-23 02:00:47 +02:00
}
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " *** ESP32-HUB75-MatrixPanel-I2S-DMA: Memory Allocations Complete *** " ) ) ;
Serial . printf_P ( PSTR ( " Total memory that was reserved: %d kB. \r \n " ) , _total_dma_capable_memory_reserved / 1024 ) ;
Serial . printf_P ( PSTR ( " ... of which was used for the DMA Linked List(s): %d kB. \r \n " ) , _dma_linked_list_memory_required / 1024 ) ;
2020-08-13 00:40:44 +02:00
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " Heap Memory Available: %d bytes total. Largest free block: %d bytes. \r \n " ) , heap_caps_get_free_size ( 0 ) , heap_caps_get_largest_free_block ( 0 ) ) ;
Serial . printf_P ( PSTR ( " General RAM Available: %d bytes total. Largest free block: %d bytes. \r \n " ) , heap_caps_get_free_size ( MALLOC_CAP_DEFAULT ) , heap_caps_get_largest_free_block ( MALLOC_CAP_DEFAULT ) ) ;
2020-07-29 09:47:54 +02:00
2020-07-29 11:44:38 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " DMA capable memory map available after malloc's: " ) ) ;
2020-07-29 11:44:38 +02:00
heap_caps_print_heap_info ( MALLOC_CAP_DMA ) ;
delay ( 1000 ) ;
# endif
2020-07-29 23:33:18 +02:00
// Just os we know
2021-02-10 16:49:19 +01:00
initialized = true ;
2020-07-29 11:44:38 +02:00
2020-07-29 09:47:54 +02:00
return true ;
2018-10-23 02:00:47 +02:00
2020-12-21 00:42:55 +01:00
} // end allocateDMAmemory()
2020-07-29 09:47:54 +02:00
2021-02-10 16:49:19 +01:00
void MatrixPanel_I2S_DMA : : configureDMA ( const HUB75_I2S_CFG & _cfg )
2020-07-29 09:47:54 +02:00
{
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " configureDMA(): Starting configuration of DMA engine. \r \n " ) ) ;
2020-07-29 09:47:54 +02:00
# endif
lldesc_t * previous_dmadesc_a = 0 ;
lldesc_t * previous_dmadesc_b = 0 ;
int current_dmadescriptor_offset = 0 ;
2020-08-02 23:03:16 +02:00
// HACK: If we need to split the payload in 1/2 so that it doesn't breach DMA_MAX, lets do it by the color_depth.
int num_dma_payload_color_depths = PIXEL_COLOR_DEPTH_BITS ;
2021-02-10 16:49:19 +01:00
if ( rowBitStructBuffSize > DMA_MAX ) {
2020-08-02 23:03:16 +02:00
num_dma_payload_color_depths = 1 ;
}
2020-08-02 23:13:04 +02:00
// Fill DMA linked lists for both frames (as in, halves of the HUB75 panel) and if double buffering is enabled, link it up for both buffers.
2020-08-13 00:40:44 +02:00
for ( int row = 0 ; row < ROWS_PER_FRAME ; row + + ) {
2020-08-02 23:03:16 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " Row %d DMA payload of %d bytes. DMA_MAX is %d. \n " ) , row , dma_buff . rowBits [ row ] - > size ( ) , DMA_MAX ) ;
# endif
2020-08-02 23:03:16 +02:00
// first set of data is LSB through MSB, single pass (IF TOTAL SIZE < DMA_MAX) - all color bits are displayed once, which takes care of everything below and inlcluding LSBMSB_TRANSITION_BIT
// NOTE: size must be less than DMA_MAX - worst case for library: 16-bpp with 256 pixels per row would exceed this, need to break into two
2021-02-10 16:49:19 +01:00
link_dma_desc ( & dmadesc_a [ current_dmadescriptor_offset ] , previous_dmadesc_a , dma_buff . rowBits [ row ] - > getDataPtr ( ) , dma_buff . rowBits [ row ] - > size ( num_dma_payload_color_depths ) ) ;
2020-08-02 23:03:16 +02:00
previous_dmadesc_a = & dmadesc_a [ current_dmadescriptor_offset ] ;
2020-07-29 09:47:54 +02:00
2021-02-10 16:49:19 +01:00
if ( m_cfg . double_buff ) {
link_dma_desc ( & dmadesc_b [ current_dmadescriptor_offset ] , previous_dmadesc_b , dma_buff . rowBits [ row ] - > getDataPtr ( 0 , 1 ) , dma_buff . rowBits [ row ] - > size ( num_dma_payload_color_depths ) ) ;
2020-08-02 23:03:16 +02:00
previous_dmadesc_b = & dmadesc_b [ current_dmadescriptor_offset ] ; }
2020-07-29 09:47:54 +02:00
current_dmadescriptor_offset + + ;
2021-02-10 16:49:19 +01:00
// If the number of pixels per row is too great for the size of a DMA payload, so we need to split what we were going to send above.
if ( rowBitStructBuffSize > DMA_MAX )
2020-08-02 23:13:04 +02:00
{
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " Spliting DMA payload for %d color depths into %d byte payloads. \r \n " ) , PIXEL_COLOR_DEPTH_BITS - 1 , rowBitStructBuffSize / PIXEL_COLOR_DEPTH_BITS ) ;
2020-08-02 23:13:04 +02:00
# endif
2020-08-02 23:03:16 +02:00
2020-08-02 23:13:04 +02:00
for ( int cd = 1 ; cd < PIXEL_COLOR_DEPTH_BITS ; cd + + )
{
2020-08-02 23:03:16 +02:00
// first set of data is LSB through MSB, single pass - all color bits are displayed once, which takes care of everything below and inlcluding LSBMSB_TRANSITION_BIT
// TODO: size must be less than DMA_MAX - worst case for library: 16-bpp with 256 pixels per row would exceed this, need to break into two
2021-02-10 16:49:19 +01:00
link_dma_desc ( & dmadesc_a [ current_dmadescriptor_offset ] , previous_dmadesc_a , dma_buff . rowBits [ row ] - > getDataPtr ( cd , 0 ) , dma_buff . rowBits [ row ] - > size ( num_dma_payload_color_depths ) ) ;
2020-08-02 23:03:16 +02:00
previous_dmadesc_a = & dmadesc_a [ current_dmadescriptor_offset ] ;
2021-02-10 16:49:19 +01:00
if ( m_cfg . double_buff ) {
link_dma_desc ( & dmadesc_b [ current_dmadescriptor_offset ] , previous_dmadesc_b , dma_buff . rowBits [ row ] - > getDataPtr ( cd , 1 ) , dma_buff . rowBits [ row ] - > size ( num_dma_payload_color_depths ) ) ;
previous_dmadesc_b = & dmadesc_b [ current_dmadescriptor_offset ] ; }
2020-08-02 23:03:16 +02:00
current_dmadescriptor_offset + + ;
2020-08-02 23:13:04 +02:00
} // additional linked list items
2020-08-02 23:03:16 +02:00
} // row depth struct
2020-08-02 23:13:04 +02:00
for ( int i = lsbMsbTransitionBit + 1 ; i < PIXEL_COLOR_DEPTH_BITS ; i + + )
{
2018-10-23 02:00:47 +02:00
// binary time division setup: we need 2 of bit (LSBMSB_TRANSITION_BIT + 1) four of (LSBMSB_TRANSITION_BIT + 2), etc
// because we sweep through to MSB each time, it divides the number of times we have to sweep in half (saving linked list RAM)
// we need 2^(i - LSBMSB_TRANSITION_BIT - 1) == 1 << (i - LSBMSB_TRANSITION_BIT - 1) passes from i to MSB
2020-07-29 09:47:54 +02:00
2020-08-11 21:44:47 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " configureDMA(): DMA Loops for PIXEL_COLOR_DEPTH_BITS %d is: %d. \r \n " ) , i , ( 1 < < ( i - lsbMsbTransitionBit - 1 ) ) ) ;
2020-08-11 21:44:47 +02:00
# endif
for ( int k = 0 ; k < ( 1 < < ( i - lsbMsbTransitionBit - 1 ) ) ; k + + )
2020-08-02 23:13:04 +02:00
{
2021-02-10 16:49:19 +01:00
link_dma_desc ( & dmadesc_a [ current_dmadescriptor_offset ] , previous_dmadesc_a , dma_buff . rowBits [ row ] - > getDataPtr ( i , 0 ) , dma_buff . rowBits [ row ] - > size ( PIXEL_COLOR_DEPTH_BITS - i ) ) ;
2020-07-29 09:47:54 +02:00
previous_dmadesc_a = & dmadesc_a [ current_dmadescriptor_offset ] ;
2021-02-10 16:49:19 +01:00
if ( m_cfg . double_buff ) {
link_dma_desc ( & dmadesc_b [ current_dmadescriptor_offset ] , previous_dmadesc_b , dma_buff . rowBits [ row ] - > getDataPtr ( i , 1 ) , dma_buff . rowBits [ row ] - > size ( PIXEL_COLOR_DEPTH_BITS - i ) ) ;
previous_dmadesc_b = & dmadesc_b [ current_dmadescriptor_offset ] ;
}
2020-07-29 09:47:54 +02:00
current_dmadescriptor_offset + + ;
} // end color depth ^ 2 linked list
} // end color depth loop
2020-08-02 23:03:16 +02:00
2020-07-29 09:47:54 +02:00
} // end frame rows
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " configureDMA(): Configured LL structure. %d DMA Linked List descriptors populated. \r \n " ) , current_dmadescriptor_offset ) ;
2020-11-03 00:16:51 +01:00
if ( desccount ! = current_dmadescriptor_offset )
{
2021-02-10 16:49:19 +01:00
Serial . printf_P ( PSTR ( " configureDMA(): ERROR! Expected descriptor count of %d != actual DMA descriptors of %d! \r \n " ) , desccount , current_dmadescriptor_offset ) ;
2020-11-03 00:16:51 +01:00
}
2020-07-29 09:47:54 +02:00
# endif
//End markers for DMA LL
2021-02-10 16:49:19 +01:00
dmadesc_a [ desccount - 1 ] . eof = 1 ;
dmadesc_a [ desccount - 1 ] . qe . stqe_next = ( lldesc_t * ) & dmadesc_a [ 0 ] ;
if ( m_cfg . double_buff ) {
2020-07-29 09:47:54 +02:00
dmadesc_b [ desccount - 1 ] . eof = 1 ;
dmadesc_b [ desccount - 1 ] . qe . stqe_next = ( lldesc_t * ) & dmadesc_b [ 0 ] ;
} else {
dmadesc_b = dmadesc_a ; // link to same 'a' buffer
2018-10-23 02:00:47 +02:00
}
2021-02-10 16:49:19 +01:00
# if SERIAL_DEBUG
Serial . println ( F ( " Performing I2S setup: " ) ) ;
# endif
Added ability to define custom pin mappings
Closes issue #4
Use something like:
' display.begin(R1_PIN, G1_PIN, B1_PIN, R2_PIN, G2_PIN, B2_PIN, A_PIN, B_PIN, C_PIN, D_PIN, E_PIN, LAT_PIN, OE_PIN, CLK_PIN ); // setup the LED matrix'
with R1_PIN etc. referring to your own define or constant variables
2019-01-03 01:22:48 +01:00
i2s_parallel_config_t cfg = {
2021-02-10 16:49:19 +01:00
. gpio_bus = { _cfg . gpio . r1 , _cfg . gpio . g1 , _cfg . gpio . b1 , _cfg . gpio . r2 , _cfg . gpio . g2 , _cfg . gpio . b2 , _cfg . gpio . lat , _cfg . gpio . oe , _cfg . gpio . a , _cfg . gpio . b , _cfg . gpio . c , _cfg . gpio . d , _cfg . gpio . e , - 1 , - 1 , - 1 } ,
. gpio_clk = _cfg . gpio . clk ,
. clkspeed_hz = _cfg . i2sspeed , //ESP32_I2S_CLOCK_SPEED, formula used is 80000000L/(cfg->clkspeed_hz + 1), must result in >=2. Acceptable values 26.67MHz, 20MHz, 16MHz, 13.34MHz...
. bits = ESP32_I2S_DMA_MODE , //ESP32_I2S_DMA_MODE,
2018-10-23 02:00:47 +02:00
. bufa = 0 ,
. bufb = 0 ,
desccount ,
desccount ,
dmadesc_a ,
dmadesc_b
} ;
//Setup I2S
i2s_parallel_setup_without_malloc ( & I2S1 , & cfg ) ;
2020-07-29 09:47:54 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " configureDMA(): DMA configuration completed on I2S1. " ) ) ;
Serial . println ( F ( " DMA Memory Map after DMA LL allocations: " ) ) ;
heap_caps_print_heap_info ( MALLOC_CAP_DMA ) ;
2020-07-29 11:44:38 +02:00
2021-02-10 16:49:19 +01:00
delay ( 1000 ) ;
2020-07-29 11:44:38 +02:00
# endif
2020-07-29 23:33:18 +02:00
2018-10-23 02:00:47 +02:00
} // end initMatrixDMABuff
2020-07-29 09:47:54 +02:00
2020-08-13 13:16:17 +02:00
/* There are 'bits' set in the frameStruct that we simply don't need to set every single time we change a pixel / DMA buffer co-ordinate.
* For example , the bits that determine the address lines , we don ' t need to set these every time . Once they ' re in place , and assuming we
* don ' t accidently clear them , then we don ' t need to set them again .
* So to save processing , we strip this logic out to the absolute bare minimum , which is toggling only the R , G , B pixels ( bits ) per co - ord .
*
* Critical dependency : That ' updateMatrixDMABuffer ( uint8_t red , uint8_t green , uint8_t blue ) ' has been run at least once over the
* entire frameBuffer to ensure all the non R , G , B bitmasks are in place ( i . e . like OE , Address Lines etc . )
2020-08-13 16:56:21 +02:00
*
* Note : If you change the brightness with setBrightness ( ) you MUST then clearScreen ( ) and repaint / flush the entire framebuffer .
2020-08-13 13:16:17 +02:00
*/
2020-07-29 09:47:54 +02:00
2021-02-10 16:49:19 +01:00
/** @brief - Update pixel at specific co-ordinate in the DMA buffer
* this is the main method used to update DMA buffer on pixel - by - pixel level so it must be fast , real fast !
* Let ' s put it into IRAM to avoid situations when it could be flushed out of instruction cache
* and had to be read from spi - flash over and over again .
* Yes , it is always a tradeoff between memory / speed / size , but compared to DMA - buffer size is not a big deal
*/
void IRAM_ATTR MatrixPanel_I2S_DMA : : updateMatrixDMABuffer ( int16_t x_coord , int16_t y_coord , uint8_t red , uint8_t green , uint8_t blue )
2018-10-23 02:00:47 +02:00
{
2021-02-10 16:49:19 +01:00
if ( ! initialized ) {
2020-07-29 11:44:38 +02:00
# if SERIAL_DEBUG
2021-02-10 16:49:19 +01:00
Serial . println ( F ( " Cannot updateMatrixDMABuffer as setup failed! " ) ) ;
2020-07-29 11:44:38 +02:00
# endif
return ;
}
2020-08-13 00:40:44 +02:00
2020-12-07 10:25:29 +01:00
/* 1) Check that the co-ordinates are within range, or it'll break everything big time.
* Valid co - ordinates are from 0 to ( MATRIX_XXXX - 1 )
*/
2021-02-10 16:49:19 +01:00
if ( x_coord < 0 | | y_coord < 0 | | x_coord > = PIXELS_PER_ROW | | y_coord > = m_cfg . mx_height ) {
2020-12-07 10:25:29 +01:00
return ;
}
/* LED Brightness Compensation. Because if we do a basic "red & mask" for example,
* we ' ll NEVER send the dimmest possible colour , due to binary skew .
* i . e . It ' s almost impossible for color_depth_idx of 0 to be sent out to the MATRIX unless the ' value ' of a color is exactly ' 1 '
* https : //ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/
*/
red = lumConvTab [ red ] ;
green = lumConvTab [ green ] ;
blue = lumConvTab [ blue ] ;
2018-10-23 02:00:47 +02:00
2020-08-13 00:40:44 +02:00
/* When using the drawPixel, we are obviously only changing the value of one x,y position,
* however , the two - scan panels paint TWO lines at the same time
* and this reflects the parallel in - DMA - memory data structure of uint16_t ' s that are getting
* pumped out at high speed .
*
* So we need to ensure we persist the bits ( 8 of them ) of the uint16_t for the row we aren ' t changing .
*
* The DMA buffer order has also been reversed ( refer to the last code in this function )
* so we have to check for this and check the correct position of the MATRIX_DATA_STORAGE_TYPE
* data .
*/
2020-12-07 10:25:29 +01:00
// We need to update the correct uint16_t in the rowBitStruct array, that gets sent out in parallel
// 16 bit parallel mode - Save the calculated value to the bitplane memory in reverse order to account for I2S Tx FIFO mode1 ordering
2021-02-10 16:49:19 +01:00
x_coord & 1U ? - - x_coord : + + x_coord ;
2020-12-07 10:25:29 +01:00
2021-02-10 16:49:19 +01:00
uint16_t _colorbitclear = BITMASK_RGB1_CLEAR , _colorbitoffset = 0 ;
if ( y_coord > = ROWS_PER_FRAME ) { // if we are drawing to the bottom part of the panel
_colorbitoffset = BITS_RGB2_OFFSET ;
_colorbitclear = BITMASK_RGB2_CLEAR ;
y_coord - = ROWS_PER_FRAME ;
}
// Iterating through color depth bits
uint8_t color_depth_idx = PIXEL_COLOR_DEPTH_BITS ;
do {
- - color_depth_idx ;
2020-12-07 10:25:29 +01:00
uint8_t mask = ( 1 < < color_depth_idx ) ; // 24 bit color
2021-02-10 16:49:19 +01:00
uint16_t RGB_output_bits = 0 ;
2020-07-29 09:47:54 +02:00
2021-02-10 16:49:19 +01:00
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2 , BIT_G2 , BIT_R2 , BIT_B1 , BIT_G1 , BIT_R1 */
RGB_output_bits | = ( bool ) ( blue & mask ) ; // --B
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( green & mask ) ; // -BG
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( red & mask ) ; // BGR
RGB_output_bits < < = _colorbitoffset ; // shift color bits to the required position
2018-10-23 02:00:47 +02:00
2020-12-07 10:25:29 +01:00
2021-02-10 16:49:19 +01:00
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE * p = getRowDataPtr ( y_coord , color_depth_idx , back_buffer_id ) ;
2020-12-07 10:25:29 +01:00
2021-02-10 16:49:19 +01:00
// We need to update the correct uint16_t word in the rowBitStruct array poiting to a specific pixel at X - coordinate
p [ x_coord ] & = _colorbitclear ; // reset RGB bits
p [ x_coord ] | = RGB_output_bits ; // set new RGB bits
2019-01-10 00:51:27 +01:00
2021-02-10 16:49:19 +01:00
} while ( color_depth_idx ) ; // end of color depth loop (8)
2020-07-29 11:44:38 +02:00
} // updateMatrixDMABuffer (specific co-ords change)
2018-10-23 02:00:47 +02:00
2019-01-03 00:09:32 +01:00
/* Update the entire buffer with a single specific colour - quicker */
2020-11-28 10:45:30 +01:00
void MatrixPanel_I2S_DMA : : updateMatrixDMABuffer ( uint8_t red , uint8_t green , uint8_t blue )
2019-01-03 00:09:32 +01:00
{
2021-02-10 16:49:19 +01:00
if ( ! initialized ) return ;
2020-08-11 21:44:47 +02:00
/* https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/ */
red = lumConvTab [ red ] ;
2020-12-07 10:25:29 +01:00
green = lumConvTab [ green ] ;
2020-08-11 21:44:47 +02:00
blue = lumConvTab [ blue ] ;
2020-07-29 11:44:38 +02:00
2020-12-07 10:25:29 +01:00
for ( uint8_t color_depth_idx = 0 ; color_depth_idx < PIXEL_COLOR_DEPTH_BITS ; color_depth_idx + + ) // color depth - 8 iterations
{
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
2020-12-08 09:10:35 +01:00
uint16_t RGB_output_bits = 0 ;
2020-12-07 10:25:29 +01:00
uint8_t mask = ( 1 < < color_depth_idx ) ; // 24 bit color
2020-12-08 09:10:35 +01:00
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2 , BIT_G2 , BIT_R2 , BIT_B1 , BIT_G1 , BIT_R1 */
RGB_output_bits | = ( bool ) ( blue & mask ) ; // --B
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( green & mask ) ; // -BG
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( red & mask ) ; // BGR
// Duplicate and shift across so we have have 6 populated bits of RGB1 and RGB2 pin values suitable for DMA buffer
RGB_output_bits | = RGB_output_bits < < BITS_RGB2_OFFSET ; //BGRBGR
//Serial.printf("Fill with: 0x%#06x\n", RGB_output_bits);
2020-12-07 10:25:29 +01:00
// iterate rows
2021-02-10 16:49:19 +01:00
int matrix_frame_parallel_row = dma_buff . rowBits . size ( ) ;
do {
- - matrix_frame_parallel_row ;
// The destination for the pixel row bitstream
ESP32_I2S_DMA_STORAGE_TYPE * p = getRowDataPtr ( matrix_frame_parallel_row , color_depth_idx , back_buffer_id ) ;
2020-12-07 10:25:29 +01:00
// iterate pixels in a row
2021-02-10 16:49:19 +01:00
int x_coord = dma_buff . rowBits [ matrix_frame_parallel_row ] - > width ;
do {
- - x_coord ;
p [ x_coord ] & = BITMASK_RGB12_CLEAR ; // reset color bits
p [ x_coord ] | = RGB_output_bits ; // set new color bits
} while ( x_coord ) ;
} while ( matrix_frame_parallel_row ) ; // end row iteration
2020-12-07 10:25:29 +01:00
} // colour depth loop (8)
2020-11-28 01:19:20 +01:00
} // updateMatrixDMABuffer (full frame paint)
2021-02-10 16:49:19 +01:00
# define CLK_PULSE digitalWrite(_cfg.gpio.clk, HIGH); digitalWrite(_cfg.gpio.clk, LOW);
2020-11-28 01:19:20 +01:00
/**
* pre - init procedures for specific drivers
*
*/
2021-02-10 16:49:19 +01:00
void MatrixPanel_I2S_DMA : : shiftDriver ( const HUB75_I2S_CFG & _cfg ) {
switch ( _cfg . driver ) {
case HUB75_I2S_CFG : : ICN2038S :
case HUB75_I2S_CFG : : FM6124 :
case HUB75_I2S_CFG : : FM6126A :
2020-11-28 01:19:20 +01:00
{
# if SERIAL_DEBUG
2020-11-28 10:45:30 +01:00
Serial . println ( F ( " MatrixPanel_I2S_DMA - initializing FM6124 driver... " ) ) ;
2020-11-28 01:19:20 +01:00
# endif
2020-12-07 10:25:29 +01:00
bool REG1 [ 16 ] = { 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 } ; // this sets global matrix brightness power
2020-12-05 01:18:25 +01:00
bool REG2 [ 16 ] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 } ; // a single bit enables the matrix output
2021-02-10 16:49:19 +01:00
for ( uint8_t _pin : { _cfg . gpio . r1 , _cfg . gpio . r2 , _cfg . gpio . g1 , _cfg . gpio . g2 , _cfg . gpio . b1 , _cfg . gpio . b2 , _cfg . gpio . clk , _cfg . gpio . lat , _cfg . gpio . oe } ) {
2020-12-05 01:18:25 +01:00
pinMode ( _pin , OUTPUT ) ;
2021-02-10 16:49:19 +01:00
digitalWrite ( _pin , LOW ) ;
}
2020-12-05 01:18:25 +01:00
2021-02-10 16:49:19 +01:00
digitalWrite ( _cfg . gpio . oe , HIGH ) ; // Disable Display
2020-12-05 01:18:25 +01:00
// Send Data to control register REG1
// this sets the matrix brightness actually
2021-02-10 16:49:19 +01:00
for ( int l = 0 ; l < PIXELS_PER_ROW ; l + + ) {
for ( uint8_t _pin : { _cfg . gpio . r1 , _cfg . gpio . r2 , _cfg . gpio . g1 , _cfg . gpio . g2 , _cfg . gpio . b1 , _cfg . gpio . b2 } )
2020-12-05 01:18:25 +01:00
digitalWrite ( _pin , REG1 [ l % 16 ] ) ; // we have 16 bits shifters and write the same value all over the matrix array
2020-11-28 01:19:20 +01:00
2021-02-10 16:49:19 +01:00
if ( l > PIXELS_PER_ROW - 12 ) { // pull the latch 11 clocks before the end of matrix so that REG1 starts counting to save the value
digitalWrite ( _cfg . gpio . lat , HIGH ) ;
}
CLK_PULSE
2020-11-28 01:19:20 +01:00
}
2020-12-05 01:18:25 +01:00
// drop the latch and save data to the REG1 all over the FM6124 chips
2021-02-10 16:49:19 +01:00
digitalWrite ( _cfg . gpio . lat , LOW ) ;
2020-11-28 01:19:20 +01:00
2020-12-05 01:18:25 +01:00
// Send Data to control register REG2 (enable LED output)
2021-02-10 16:49:19 +01:00
for ( int l = 0 ; l < PIXELS_PER_ROW ; l + + ) {
for ( uint8_t _pin : { _cfg . gpio . r1 , _cfg . gpio . r2 , _cfg . gpio . g1 , _cfg . gpio . g2 , _cfg . gpio . b1 , _cfg . gpio . b2 } )
2020-12-05 01:18:25 +01:00
digitalWrite ( _pin , REG2 [ l % 16 ] ) ; // we have 16 bits shifters and we write the same value all over the matrix array
2020-11-28 01:19:20 +01:00
2021-02-10 16:49:19 +01:00
if ( l > PIXELS_PER_ROW - 13 ) { // pull the latch 12 clocks before the end of matrix so that reg2 stars counting to save the value
digitalWrite ( _cfg . gpio . lat , HIGH ) ;
}
CLK_PULSE
2020-11-28 01:19:20 +01:00
}
2020-12-05 01:18:25 +01:00
// drop the latch and save data to the REG1 all over the FM6126 chips
2021-02-10 16:49:19 +01:00
digitalWrite ( _cfg . gpio . lat , LOW ) ;
// blank data regs to keep matrix clear after manipulations
for ( uint8_t _pin : { _cfg . gpio . r1 , _cfg . gpio . r2 , _cfg . gpio . g1 , _cfg . gpio . g2 , _cfg . gpio . b1 , _cfg . gpio . b2 } )
digitalWrite ( _pin , LOW ) ;
for ( int l = 0 ; l < PIXELS_PER_ROW ; + + l ) {
CLK_PULSE
}
digitalWrite ( _cfg . gpio . lat , HIGH ) ;
CLK_PULSE
digitalWrite ( _cfg . gpio . lat , LOW ) ;
digitalWrite ( _cfg . gpio . oe , LOW ) ; // Enable Display
CLK_PULSE
2020-11-28 01:19:20 +01:00
}
2020-12-05 01:18:25 +01:00
break ;
2021-02-10 16:49:19 +01:00
case HUB75_I2S_CFG : : SHIFT :
2020-11-28 01:19:20 +01:00
default :
break ;
}
}
2020-12-07 10:25:29 +01:00
/**
2021-02-10 16:49:19 +01:00
* clear screen to black and reset all service bits
2020-12-07 10:25:29 +01:00
*/
void MatrixPanel_I2S_DMA : : clearScreen ( ) {
2021-02-10 16:49:19 +01:00
clearFrameBuffer ( ) ;
brtCtrlOE ( brightness ) ;
if ( m_cfg . double_buff ) {
clearFrameBuffer ( 1 ) ;
brtCtrlOE ( brightness , 1 ) ;
}
}
/**
* @ brief - clears and reinitializes color / control data in DMA buffs
* When allocated , DMA buffs might be dirtry , so we need to blank it and initialize ABCDE , LAT , OE control bits .
* Those control bits are constants during the entire DMA sweep and never changed when updating just pixel color data
* so we could set it once on DMA buffs initialization and forget .
* This effectively clears buffers to blank BLACK and makes it ready to display output .
* ( Brightness control via OE bit manipulation is another case )
*/
void MatrixPanel_I2S_DMA : : clearFrameBuffer ( bool _buff_id ) {
if ( ! initialized )
return ;
// we start with iterating all rows in dma_buff structure
int row_idx = dma_buff . rowBits . size ( ) ;
do {
- - row_idx ;
ESP32_I2S_DMA_STORAGE_TYPE * row = dma_buff . rowBits [ row_idx ] - > getDataPtr ( 0 , _buff_id ) ; // set pointer to the HEAD of a buffer holding data for the entire matrix row
ESP32_I2S_DMA_STORAGE_TYPE abcde = ( ESP32_I2S_DMA_STORAGE_TYPE ) row_idx ;
abcde < < = BITS_ADDR_OFFSET ; // shift row y-coord to match ABCDE bits in vector from 8 to 12
// get last pixel index in a row of all colordepths
int x_pixel = dma_buff . rowBits [ row_idx ] - > width * dma_buff . rowBits [ row_idx ] - > color_depth ;
//Serial.printf(" from pixel %d, ", x_pixel);
// fill all x_pixels except color_index[0] (LSB) ones, this also clears all color data to 0's black
do {
- - x_pixel ;
row [ x_pixel ] = abcde ;
} while ( x_pixel ! = dma_buff . rowBits [ row_idx ] - > width ) ;
// color_index[0] (LSB) x_pixels must be "marked" with a previous's row address, 'cause it is used to display
// previous row while we pump in LSB's for a new row
abcde = ( ( ESP32_I2S_DMA_STORAGE_TYPE ) row_idx - 1 ) < < BITS_ADDR_OFFSET ;
do {
- - x_pixel ;
row [ x_pixel ] = abcde ;
} while ( x_pixel ) ;
// let's set LAT/OE control bits for specific pixels in each color_index subrows
uint8_t coloridx = dma_buff . rowBits [ row_idx ] - > color_depth ;
do {
- - coloridx ;
// switch pointer to a row for a specific color index
row = dma_buff . rowBits [ row_idx ] - > getDataPtr ( coloridx , _buff_id ) ;
// drive latch while shifting out last bit of RGB data
row [ dma_buff . rowBits [ row_idx ] - > width - 2 ] | = BIT_LAT ; // -1 pixel to compensate array index starting at 0
// need to disable OE before/after latch to hide row transition
// Should be one clock or more before latch, otherwise can get ghosting
uint8_t _blank = m_cfg . latch_blanking ;
do {
- - _blank ;
row [ 0 + _blank ] | = BIT_OE ;
row [ dma_buff . rowBits [ row_idx ] - > width - _blank - 3 ] | = BIT_OE ; // (LAT pulse is (width-2) -1 pixel to compensate array index starting at 0
} while ( _blank ) ;
} while ( coloridx ) ;
} while ( row_idx ) ;
}
/**
* @ brief - reset OE bits in DMA buffer in a way to control brightness
* @ param brt - brightness level from 0 to row_width
* @ param _buff_id - buffer id to control
*/
void MatrixPanel_I2S_DMA : : brtCtrlOE ( int brt , const bool _buff_id ) {
if ( ! initialized )
return ;
if ( brt > PIXELS_PER_ROW - m_cfg . latch_blanking ) // can't control values larger than (row_width - latch_blanking) to avoid ongoing issues being raised about brightness and ghosting.
brt = PIXELS_PER_ROW - m_cfg . latch_blanking ;
if ( brt < 0 )
brt = 0 ;
// start with iterating all rows in dma_buff structure
int row_idx = dma_buff . rowBits . size ( ) ;
do {
- - row_idx ;
// let's set OE control bits for specific pixels in each color_index subrows
uint8_t coloridx = dma_buff . rowBits [ row_idx ] - > color_depth ;
do {
- - coloridx ;
// switch pointer to a row for a specific color index
ESP32_I2S_DMA_STORAGE_TYPE * row = dma_buff . rowBits [ row_idx ] - > getDataPtr ( coloridx , _buff_id ) ;
int x_coord = dma_buff . rowBits [ row_idx ] - > width ;
do {
- - x_coord ;
// Brightness control via OE toggle - disable matrix output at specified x_coord
if ( ( coloridx > lsbMsbTransitionBit | | ! coloridx ) & & ( ( x_coord ) > = brt ) ) {
row [ x_coord ] | = BIT_OE ; continue ; // For Brightness control
}
// special case for the bits *after* LSB through (lsbMsbTransitionBit) - OE is output after data is shifted, so need to set OE to fractional brightness
if ( coloridx & & coloridx < = lsbMsbTransitionBit ) {
// divide brightness in half for each bit below lsbMsbTransitionBit
int lsbBrightness = brt > > ( lsbMsbTransitionBit - coloridx + 1 ) ;
if ( ( x_coord ) > = lsbBrightness )
row [ x_coord ] | = BIT_OE ; // For Brightness
continue ;
}
// clear OE bit for all other pixels
row [ x_coord ] & = BITMASK_OE_CLEAR ;
} while ( x_coord ) ;
// need to disable OE before/after latch to hide row transition
// Should be one clock or more before latch, otherwise can get ghosting
uint8_t _blank = m_cfg . latch_blanking ;
do {
- - _blank ;
row [ 0 + _blank ] | = BIT_OE ;
// no need, has been done already
//row[dma_buff.rowBits[row_idx]->width - _blank - 3 ] |= BIT_OE; // (LAT pulse is (width-2) -1 pixel to compensate array index starting at 0
} while ( _blank ) ;
} while ( coloridx ) ;
} while ( row_idx ) ;
}
/*
* overload for compatibility
*/
bool MatrixPanel_I2S_DMA : : begin ( int r1 , int g1 , int b1 , int r2 , int g2 , int b2 , int a , int b , int c , int d , int e , int lat , int oe , int clk ) {
m_cfg . gpio . r1 = r1 ; m_cfg . gpio . g1 = g1 ; m_cfg . gpio . b1 = b1 ;
m_cfg . gpio . r2 = r2 ; m_cfg . gpio . g2 = g2 ; m_cfg . gpio . b1 = b2 ;
m_cfg . gpio . lat = lat ; m_cfg . gpio . oe = oe ; m_cfg . gpio . clk = clk ;
return begin ( ) ;
}
/**
* @ brief - Sets how many clock cycles to blank OE before / after LAT signal change
* @ param uint8_t pulses - clocks before / after OE
* default is DEFAULT_LAT_BLANKING
* Max is MAX_LAT_BLANKING
* @ returns - new value for m_cfg . latch_blanking
*/
uint8_t MatrixPanel_I2S_DMA : : setLatBlanking ( uint8_t pulses ) {
if ( pulses > MAX_LAT_BLANKING )
pulses = MAX_LAT_BLANKING ;
if ( ! pulses )
pulses = DEFAULT_LAT_BLANKING ;
m_cfg . latch_blanking = pulses ;
setPanelBrightness ( brightness ) ; // set brighness to reset OE bits to the values matching new LAT blanking setting
return m_cfg . latch_blanking ;
}
# ifndef NO_FAST_FUNCTIONS
/**
* @ brief - update DMA buff drawing horizontal line at specified coordinates
* @ param x_ccord - line start coordinate x
* @ param y_ccord - line start coordinate y
* @ param l - line length
* @ param r , g , b , - RGB888 color
*/
void MatrixPanel_I2S_DMA : : hlineDMA ( int16_t x_coord , int16_t y_coord , int16_t l , uint8_t red , uint8_t green , uint8_t blue ) {
if ( ! initialized )
return ;
if ( x_coord < 0 | | y_coord < 0 | | l < 1 | | x_coord > = PIXELS_PER_ROW | | y_coord > = m_cfg . mx_height )
return ;
if ( x_coord + l > PIXELS_PER_ROW )
l = PIXELS_PER_ROW - x_coord + 1 ; // reset width to end of row
/* LED Brightness Compensation */
red = lumConvTab [ red ] ;
green = lumConvTab [ green ] ;
blue = lumConvTab [ blue ] ;
uint16_t _colorbitclear = BITMASK_RGB1_CLEAR , _colorbitoffset = 0 ;
if ( y_coord > = ROWS_PER_FRAME ) { // if we are drawing to the bottom part of the panel
_colorbitoffset = BITS_RGB2_OFFSET ;
_colorbitclear = BITMASK_RGB2_CLEAR ;
y_coord - = ROWS_PER_FRAME ;
}
// Iterating through color depth bits (8 iterations)
uint8_t color_depth_idx = PIXEL_COLOR_DEPTH_BITS ;
do {
- - color_depth_idx ;
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
uint16_t RGB_output_bits = 0 ;
uint8_t mask = ( 1 < < color_depth_idx ) ;
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2 , BIT_G2 , BIT_R2 , BIT_B1 , BIT_G1 , BIT_R1 */
RGB_output_bits | = ( bool ) ( blue & mask ) ; // --B
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( green & mask ) ; // -BG
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( red & mask ) ; // BGR
RGB_output_bits < < = _colorbitoffset ; // shift color bits to the required position
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE * p = dma_buff . rowBits [ y_coord ] - > getDataPtr ( color_depth_idx , back_buffer_id ) ;
// inlined version works slower here, dunno why :(
// ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(y_coord, color_depth_idx, back_buffer_id);
int16_t _l = l ;
do { // iterate pixels in a row
int16_t _x = x_coord + - - _l ;
// Save the calculated value to the bitplane memory in reverse order to account for I2S Tx FIFO mode1 ordering
uint16_t & v = p [ _x & 1U ? - - _x : + + _x ] ;
v & = _colorbitclear ; // reset color bits
v | = RGB_output_bits ; // set new color bits
} while ( _l ) ; // iterate pixels in a row
} while ( color_depth_idx ) ; // end of color depth loop (8)
} // hlineDMA()
/**
* @ brief - update DMA buff drawing vertical line at specified coordinates
* @ param x_ccord - line start coordinate x
* @ param y_ccord - line start coordinate y
* @ param l - line length
* @ param r , g , b , - RGB888 color
*/
void MatrixPanel_I2S_DMA : : vlineDMA ( int16_t x_coord , int16_t y_coord , int16_t l , uint8_t red , uint8_t green , uint8_t blue ) {
if ( ! initialized )
return ;
if ( x_coord < 0 | | y_coord < 0 | | l < 1 | | x_coord > = PIXELS_PER_ROW | | y_coord > = m_cfg . mx_height )
return ;
if ( y_coord + l > m_cfg . mx_height )
l = m_cfg . mx_height - y_coord + 1 ; // reset width to end of col
/* LED Brightness Compensation */
red = lumConvTab [ red ] ;
green = lumConvTab [ green ] ;
blue = lumConvTab [ blue ] ;
// Save the calculated value to the bitplane memory in reverse order to account for I2S Tx FIFO mode1 ordering
x_coord & 1U ? - - x_coord : + + x_coord ;
uint8_t color_depth_idx = PIXEL_COLOR_DEPTH_BITS ;
do { // Iterating through color depth bits (8 iterations)
- - color_depth_idx ;
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
uint8_t mask = ( 1 < < color_depth_idx ) ;
uint16_t RGB_output_bits = 0 ;
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2 , BIT_G2 , BIT_R2 , BIT_B1 , BIT_G1 , BIT_R1 */
RGB_output_bits | = ( bool ) ( blue & mask ) ; // --B
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( green & mask ) ; // -BG
RGB_output_bits < < = 1 ;
RGB_output_bits | = ( bool ) ( red & mask ) ; // BGR
int16_t _l = 0 , _y = y_coord ;
uint16_t _colorbitclear = BITMASK_RGB1_CLEAR ;
do { // iterate pixels in a column
if ( _y > = ROWS_PER_FRAME ) { // if y-coord overlaped bottom-half panel
_y - = ROWS_PER_FRAME ;
_colorbitclear = BITMASK_RGB2_CLEAR ;
RGB_output_bits < < = BITS_RGB2_OFFSET ;
}
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE * p = getRowDataPtr ( _y , color_depth_idx , back_buffer_id ) ;
p [ x_coord ] & = _colorbitclear ; // reset RGB bits
p [ x_coord ] | = RGB_output_bits ; // set new RGB bits
+ + _y ;
} while ( + + _l ! = l ) ; // iterate pixels in a col
} while ( color_depth_idx ) ; // end of color depth loop (8)
} // vlineDMA()
/**
* @ brief - update DMA buff drawing a rectangular at specified coordinates
* this works much faster than mulltiple consecutive per - pixel calls to updateMatrixDMABuffer ( )
* @ param int16_t x , int16_t y - coordinates of a top - left corner
* @ param int16_t w , int16_t h - width and height of a rectangular , min is 1 px
* @ param uint8_t r - RGB888 color
* @ param uint8_t g - RGB888 color
* @ param uint8_t b - RGB888 color
*/
void MatrixPanel_I2S_DMA : : fillRectDMA ( int16_t x , int16_t y , int16_t w , int16_t h , uint8_t r , uint8_t g , uint8_t b ) {
// h-lines are >2 times faster than v-lines
// so will use it only for tall rects with h >2w
if ( h > 2 * w ) {
// draw using v-lines
do {
- - w ;
vlineDMA ( x + w , y , h , r , g , b ) ;
} while ( w ) ;
2020-12-07 10:25:29 +01:00
} else {
2021-02-10 16:49:19 +01:00
// draw using h-lines
do {
- - h ;
hlineDMA ( x , y + h , w , r , g , b ) ;
} while ( h ) ;
2020-12-07 10:25:29 +01:00
}
2021-02-10 16:49:19 +01:00
}
# endif // NO_FAST_FUNCTIONS