This commit is contained in:
Kouzerumatsu / Bananafox 2023-02-08 22:37:12 +08:00
commit d87ffe3be4
19 changed files with 297 additions and 276 deletions

11
.github/dependabot.yml vendored Normal file
View file

@ -0,0 +1,11 @@
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for all configuration options:
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
version: 2
updates:
- package-ecosystem: "github-actions" # See documentation for possible values
directory: "/" # Location of package manifests
schedule:
interval: "weekly"

View file

@ -7,8 +7,16 @@ name: PlatformIO CI
on:
push:
branches: [ master, dev ]
paths-ignore:
- '**.md'
- 'doc/**'
- '.github/**'
pull_request:
branches: [ master, dev ]
paths-ignore:
- '**.md'
- 'doc/**'
- '.github/**'
jobs:
build:
@ -16,33 +24,42 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
framework: ["Arduino", "IDF"]
no_gfx: ["", -DNO_GFX]
no_fast_functions: ["", -DNO_FAST_FUNCTIONS]
no_cie1931: ["", -DNO_CIE1931]
virtual_panel: ["", -DVIRTUAL_PANE]
example:
- "examples/PIO_TestPatterns"
exclude:
- no_fast_functions: ""
virtual_panel: -DVIRTUAL_PANE
steps:
- uses: actions/checkout@v2
- name: Cache pip
uses: actions/cache@v2
- name: Checkout
uses: actions/checkout@v3
- name: Cache pip and platformio
uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: ${{ runner.os }}-pip-
- name: Cache PlatformIO
uses: actions/cache@v2
with:
path: ~/.platformio
key: ${{ runner.os }}-${{ hashFiles('**/lockfiles') }}
path: |
~/.cache/pip
~/.platformio/.cache
key: ${{ runner.os }}-pio
- name: Set up Python 3.x
uses: actions/setup-python@v2
uses: actions/setup-python@v4
with:
python-version: '3.x'
- name: Install Platformio
run: |
python -m pip install --upgrade pip
pip install --upgrade platformio
pio update
- name: Run PlatformIO
run: pip install --upgrade platformio
- name: Run PlatformIO CI (Arduino)
if: ${{ matrix.framework == 'Arduino'}}
env:
PLATFORMIO_BUILD_FLAGS: ${{ matrix.no_gfx }} ${{ matrix.no_fast_functions }} ${{ matrix.no_cie1931 }} ${{ matrix.virtual_panel }}
PLATFORMIO_CI_SRC: ${{ matrix.example }}
run: |
pio ci -c ${{ matrix.example }}/platformio.ini
run: pio ci -e esp32 -c ${{ matrix.example }}/platformio.ini
- name: Run PlatformIO CI (ESP-IDF)
if: ${{ matrix.framework == 'IDF'}}
env:
PLATFORMIO_BUILD_FLAGS: -DIDF_BUILD ${{ matrix.no_gfx }} ${{ matrix.no_fast_functions }} ${{ matrix.no_cie1931 }} ${{ matrix.virtual_panel }}
# pio ci doesn't use our sdkconfig, so we have to use pio run
run: pio run -d ${{ matrix.example }} -e esp32idf -c ${{ matrix.example }}/platformio.ini

119
README.md
View file

@ -1,4 +1,4 @@
# HUB75 RGB LED matrix library utilizing ESP32 DMA Engine
# HUB75 RGB LED matrix panel library utilizing ESP32 DMA
__[BUILD OPTIONS](/doc/BuildOptions.md) | [EXAMPLES](/examples/README.md)__ | [![PlatformIO CI](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-DMA/actions/workflows/pio_build.yml/badge.svg)](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-DMA/actions/workflows/pio_build.yml)
@ -28,43 +28,57 @@ __[BUILD OPTIONS](/doc/BuildOptions.md) | [EXAMPLES](/examples/README.md)__ | [!
- [Thank you!](#thank-you)
## Introduction
This ESP32 Arduino/IDF library for HUB75 / HUB75E connector type 64x32 RGB LED 1/16 Scan OR 64x64 RGB LED 1/32 Scan LED Matrix Panel, utilities the DMA functionality provided by the ESP32's 'LCD Mode'.
* This is an ESP32 Arduino/IDF library for HUB75 / HUB75E RGB LED panels.
* This library 'out of the box' (mostly) supports HUB75 panels where TWO rows/lines are updated in parallel... referred to as 'two scan' panels within this library's documentation.
* 'Four scan' panels are also supported - but please refer to the Four Scan Panel example.
* The library uses the DMA functionality provided by the ESP32's 'LCD Mode' for faster output.
### Features
- **Low CPU overhead** - once initialized pixel data is pumped to the matrix inputs via DMA engine directly from memory
- **Fast** - updating pixel data involves only bit-wise logic over DMA buffer memory, no pins manipulation or blocking IO
- **Full screen BCM** - library utilizes [binary-code modulation](http://www.batsocks.co.uk/readme/art_bcm_5.htm) to render pixel color depth / brightness over the entire matrix
- **Variable color depth** - up to TrueColor 24 bits output is possible depending on matrix size/refresh rate required
- **CIE 1931** luminance [correction](https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/) (aka natural LED dimming)
- **Adafruit GFX API** - library could be build with AdafruitGFX, simplified GFX or without GFX API at all
- **Low CPU overhead** - Pixel data is sent directly with the use of hardware-backed DMA, no CPU involvement
- **Fast** - Updating pixel data involves only bit-wise logic over DMA buffer memory, no pins manipulation or blocking IO
- **Full screen BCM** - Library utilizes [binary-code modulation](http://www.batsocks.co.uk/readme/art_bcm_5.htm) to render pixel color depth / brightness over the entire matrix to give reasonable colour depth
- **Variable color depth** - Up to TrueColor 24 bits output is possible depending on matrix size/refresh rate required
- **CIE 1931** luminance [correction](https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/) (aka natural LED dimming) implemented
- **Adafruit GFX API** - Library can be built with AdafruitGFX, simplified GFX or without a GFX API at all
If you wanna ask "*...OK, OK, than what's the price for those features?*" I'll tell you - "[memory](/doc/memcalc.md), you pay it all by precious MCU's memory for DMA buffer".
Please use the ['Memory Calculator'](/doc/memcalc.md) to see what is actually achievable with a typical ESP32.
![Memory Calculator](doc/memcalc.jpg)
## ESP32 Supported
This library supports the:
* Original ESP32 - That being the ESP-WROOM-32 module with ESP32D0WDQ6 chip from 2017. This MCU has 520kB of SRAM which is much more than all the recent 'reboots' of the ESP32 such as the S2, S3 etc.
## ESP32 variants supported
* Original ESP32 - That being the ESP-WROOM-32 module with ESP32D0WDQ6 chip from ~2017.
* ESP32-S2; and
* ESP32-S3
RISC-V ESP32's (like the C3) are not, and will never be supported as they do not have parallel DMA output required for this library.
RISC-V ESP32's (like the C3) are not supported as they do not have the hardware 'LCD mode' required for this library.
## Panels Supported
* 64x32 (width x height) pixel 1/16 Scan LED Matrix 'Indoor' Panel, such as this [typical RGB panel available for purchase](https://www.aliexpress.com/item/256-128mm-64-32-pixels-1-16-Scan-Indoor-3in1-SMD2121-RGB-full-color-P4-led/32810362851.html).
* 64x64 pixel 1/32 Scan LED Matrix 'Indoor' Panel.
* 32x16 pixel 1/4 Scan LED Matrix 'Indoor' Panel using an ingenious workaround as demonstrated in the 32x16_1_4_ScanPanel example.
* 126x64 [SM5266P](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/164) 1/32 Scan Panel
## Memory is required!
"*What's the price for those features?*" - It's [memory](/doc/memcalc.md), you pay it all by precious MCU's internal memory (SRAM) for the DMA buffer.
A typical 64x32px panel at 24bpp colour uses about 20kB of internal memory.
Please use the ['Memory Calculator'](/doc/memcalc.md) to see what is *typically* achievable with the typical ESP32. ![Memory Calculator](doc/memcalc.jpg)
For the ESP32-S3 only, you can use SPIRAM/PSRAM to drive the HUB75 DMA buffer when using **Octal SPI-RAM** (i.e. ESP32 S3 N8R8 variant). However, due to bandwidth limitations, the maximum output frequency is limited to approx. 13Mhz, which will limit the real-world number of panels that can be chained without flicker.
To enable PSRAM support on the ESP32-S3, refer to [the build options](/doc/BuildOptions.md) to enable.
For all other ESP32 variants (like the most popular original ESP32), [only *internal* SRAM can be used](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/55), so you will be limited to the ~200KB or so of 'free' SRAM (because of the memory used for your sketch amongst other things) regardless of how many megabytes of SPIRAM/PSRAM you may have connected.
## Suported panels
### Parallel scan lines
* 'Two scan' panels where **two** rows/lines are updated in parallel.
* 64x32 (width x height) 'Indoor' panels, such as this [typical RGB panel available for purchase](https://www.aliexpress.com/item/256-128mm-64-32-pixels-1-16-Scan-Indoor-3in1-SMD2121-RGB-full-color-P4-led/32810362851.html). Often also referred to as 1/16 'scan panel' as every 16th row is updated in parallel (hence why I refer to it as 'two scan')
* 64x64 pixel 1/32 Scan LED Matrix 'Indoor' Panel
* 'Four scan' panels where **four** rows/lines are updated in parallel.
* 32x16 pixel 1/4 Scan LED Matrix 'Indoor' Panel using an ingenious workaround as demonstrated in the Four_Scan_Panel example.
* 126x64 [SM5266P](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/164)
Ones interested in internals of such matrices could find [this article](https://www.sparkfun.com/news/2650) useful.
Due to the high-speed optimized nature of this library, only specific panels are supported. Please do not raise issues with respect to panels not supported on the list below.
## Panel driver chips known to be working well
![Panel Scan Types](doc/ScanRateGraphic.jpg)
### Driver chips known to be working well
* ICND2012
* [RUC7258](http://www.ruichips.com/en/products.html?cateid=17496)
@ -72,28 +86,19 @@ Due to the high-speed optimized nature of this library, only specific panels are
* SM5266P
## Panels Not Supported
* 1/8 Scan LED Matrix Panels are not supported.
* RUL5358 / SHIFTREG_ABC_BIN_DE based panels are not supported.
* ICN2053 / FM6353 based panels - Refer to [this library](https://github.com/LAutour/ESP32-HUB75-MatrixPanel-DMA-ICN2053), which is a fork of this library ( [discussion link](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-DMA/discussions/324)).
* Any other panel not listed above.
Please use an [alternative library](https://github.com/2dom/PxMatrix) if you bought one of these.
## Cool uses of this library
There are a number of great looking LED graphical display projects which leverage this library, these include:
* [128x64 Morph Clock](https://github.com/bogd/esp32-morphing-clock)
* [FFT Audio Visualisation](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/149)
* [Clock, GIF Animator and Audio Visualiser](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/153)
* [Aurora Audio Visualiser](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/188)
* [Big Visualisation](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/155)
* [Clockwise](https://jnthas.github.io/clockwise/)
# Getting Started
## 1. Library Installation
* Dependency: You will need to install Adafruit_GFX from the "Library > Manage Libraries" menu.
* Download and unzip this repository into your Arduino/libraries folder (or better still, use the Arduino 'add library from .zip' option.
* Library also tested to work fine with PlatformIO, install into your PlatformIO projects' lib/ folder as appropriate. Or just add it into [platformio.ini](/doc/BuildOptions.md) [lib_depth](https://docs.platformio.org/en/latest/projectconf/section_env_library.html#lib-deps) section.
* Dependancy: You will need to install Adafruit_GFX from the "Library > Manage Libraries" menu.
* Install this library from the Arduino Library manager.
Library also tested to work fine with PlatformIO, install into your PlatformIO projects' lib/ folder as appropriate. Or just add it into [platformio.ini](/doc/BuildOptions.md) [lib_depth](https://docs.platformio.org/en/latest/projectconf/section_env_library.html#lib-deps) section.
## 2. Wiring the ESP32/ESP32-S2/ESP32-S3 to an LED Matrix Panel
@ -113,7 +118,7 @@ If you want to change the GPIO mapping at runtime, simply provide the wanted pin
#define B_PIN 19
#define C_PIN 5
#define D_PIN 17
#define E_PIN -1 // required for 1/32 scan panels, like 64x64. Any available pin would do, i.e. IO32
#define E_PIN -1 // required for 1/32 scan panels, like 64x64px. Any available pin would do, i.e. IO32
#define LAT_PIN 4
#define OE_PIN 15
#define CLK_PIN 16
@ -136,25 +141,18 @@ Various people have created PCBs for which one can simply connect an ESP32 to a
Please contact or order these products from the respective authors.
### Can I use with a larger panel (i.e. 64x64px square panel)?
If you want to use with a 64x64 pixel panel (typically a HUB75*E* panel) you MUST configure a valid *E_PIN* to your ESP32 and connect it to the E pin of the HUB75 panel! Hence the 'E' in 'HUB75E'
## 3. Run a Test Sketch
Below is a bare minimum sketch to draw a single white dot in the top left. You must call begin() before you call ANY pixel-drawing (fonts, lines, colours etc.) function of the MatrixPanel_I2S_DMA class.
Once this is working, refer to the [PIO Test Patterns](/examples/PIO_TestPatterns) example. This sketch draws simple colors/lines/gradients over the entire matrix and it could help to troubleshoot various issues with ghosting, flickering, etc...
>Note: Requires the use of [PlatformIO](https://platformio.org/), which you should probably use if you aren't already.
# More Information
## Build-time options
Although Arduino IDE does not [seem](https://github.com/arduino/Arduino/issues/421) to offer any way of specifying compile-time options for external libs there are other IDE's (like [PlatformIO](https://platformio.org/)/[Eclipse](https://www.eclipse.org/ide/)) that could use that. Check [Build Options](doc/BuildOptions.md) document for reference.
## Memory constraints
If you are going to use large/combined panels make sure to check for [memory constraints](/doc/i2s_memcalc.md).
NOTE: You can use PSRAM to expand the amount of memory available only on the ESP32-S3 and with Octal SPI-RAM (ESP32 S3 N8R8 variant). However, due to bandwidth limitations, the maximum output frequency is 10Mhz, which will limit the real world number of panels that can be chained without the refresh rate being impacted.
For all other ESP32 variants (like the most popular original ESP32), the hardware [only allows DMA transfer from *internal* SRAM](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/55), so you will be limited to the 200KB or so of usable SRAM of the ESP32 regardless of how many megabytes of PSRAM you may have connected.
## Can I use with a larger panel (i.e. 64x64px square panel)?
If you want to use with a 64x64 pixel panel (typically a HUB75*E* panel) you MUST configure a valid *E_PIN* to your ESP32 and connect it to the E pin of the HUB75 panel! Hence the 'E' in 'HUB75E'
Note: Requires the use of [PlatformIO](https://platformio.org/), which you should probably use if you aren't already.
# Further information
## Can I chain panels?
Yes!
@ -168,7 +166,7 @@ Resolutions beyond 128x64 are more likely to result in crashes due to [memory](/
![ezgif com-video-to-gif](https://user-images.githubusercontent.com/12006953/89837358-b64c0480-db60-11ea-870d-4b6482068a3b.gif)
## Panel Brightness
## Adjusting Panel Brightness
By default you should not need to change / set the brightness value (which is 128 or 50%) as it should be sufficient for most purposes. Brightness can be changed by calling `setPanelBrightness(xx)` or `setBrightness8(xx)`.
@ -185,7 +183,8 @@ Serial.begin(115200);
```
![Brightness Samples](https://user-images.githubusercontent.com/55933003/211192894-f90311f5-b6fe-4665-bf26-2f363bb36047.png)
## Build-time options
Although Arduino IDE does not [seem](https://github.com/arduino/Arduino/issues/421) to offer any way of specifying compile-time options for external libs there are other IDE's (like [PlatformIO](https://platformio.org/)/[Eclipse](https://www.eclipse.org/ide/)) that could use that. Check [Build Options](doc/BuildOptions.md) document for reference.
## Latch blanking
If you are facing issues with image ghosting when pixels has clones with horizontal offset, than you try to change Latch blanking value. Latch blanking controls for how many clock pulses matrix output is disabled via EO signal before/after toggling LAT signal. It hides row bits transitioning and different panels may require longer times for proper operation. Default value is 1 clock before/after LAT row transition. This could be controlled with `MatrixPanel_I2S_DMA::setLatBlanking(uint8_t v)`. v could be between 1 to 4, default is 1, larger values won't give any benefit other than reducing brightness.
@ -209,6 +208,16 @@ This project was inspired by:
* 'SmartMatrix': https://github.com/pixelmatix/SmartMatrix/tree/teensylc
* Sprite_TM's demo implementation here: https://www.esp32.com/viewtopic.php?f=17&t=3188
## Cool uses of this library
There are a number of great looking LED graphical display projects which leverage this library, these include:
* [128x64 Morph Clock](https://github.com/bogd/esp32-morphing-clock)
* [FFT Audio Visualisation](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/149)
* [Clock, GIF Animator and Audio Visualiser](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/153)
* [Aurora Audio Visualiser](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/188)
* [Big Visualisation](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/discussions/155)
* [Clockwise](https://jnthas.github.io/clockwise/)
# Thank you!
* [Brian Lough](https://www.tindie.com/stores/brianlough/) ([youtube link](https://www.youtube.com/c/brianlough)) for providing code contributions, hardware and suggestions
* [Vortigont](https://github.com/vortigont) for his game changing code contributions and performance optimisations

View file

@ -15,6 +15,9 @@ build_flags =
-DNO_GFX=1
(etc.....)
```
Or if using Arduino: 'Tools' menu > 'Core Debug Level' > Select 'Debug'
... and use the Serial output to see the debug information.
## Build flags
@ -24,11 +27,12 @@ build_flags =
| **USE_GFX_ROOT** | Use [lightweight](https://github.com/mrfaptastic/Adafruit_GFX_Lite) version of AdafuitGFX, without Adafruit BusIO extensions | You **must** install [Adafruit_GFX_Lite](https://github.com/mrfaptastic/Adafruit_GFX_Lite) library instead of original AdafruitGFX|
| **NO_GFX** | Build without AdafuitGFX API, only native methods supported based on manipulating DMA buffer. I.e. no methods of drawing circles/shapes, typing text or using fonts!!! This might save some resources for applications using it's own internal graphics buffer or working solely with per-pixel manipulation. | Use this if you rely on FastLED, Neomatrix or any other API. For example [Aurora](/examples/AuroraDemo/) effects can work fine w/o AdafruitGFX. |
| **NO_FAST_FUNCTIONS** | Do not build auxiliary speed-optimized functions. Those are used to speed-up operations like drawing straight lines or rectangles. Otherwise lines/shapes are drawn using drawPixel() method. The trade-off for speed is RAM/code-size, take it or leave it ;) | If you are not using AdafruitGFX than you probably do not need this either|
|**NO_CIE1931**|Do not use LED brightness [compensation](https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/) described in [CIE 1931](https://en.wikipedia.org/wiki/CIE_1931_color_space). Normally library would adjust every pixel's RGB888 so that luminance (or brightness control) for the corresponding LED's would appear 'linear' to the human's eye. I.e. a white dot with rgb(128,128,128) would seem to be at 50% brightness between rgb(0,0,0) and rgb(255,255,255). Normally you would like to keep this enabled by default. Not only it makes brightness control "linear", it also makes colors more vivid, otherwise it looks brighter but 'bleached'.|You might want to turn it off in some special cases like: <ul><li>Using some other overlay lib for intermediate calculations that makes it's own compensation, like FastLED's [dimming functions](http://fastled.io/docs/3.1/group___dimming.html).<li>running at low color depth's - it **might** (or might not) look better in shadows, darker gradients w/o compensation, try it<li>you run for as bright output as possible, no matter what (make sure you have proper powering)<li>you run for speed/save resources at all costs</ul> |
| **FORCE_COLOUR_DEPTH** |In some cases the library may reduce colour fidelity to increase the refresh rate (i.e. reduce visible flicker). This is most likely to occur with a large chain of panels. However, if you want to force pure 24bpp colour, at the expense of likely noticeable flicker, then set this defined. |Not required in 99% of cases.
|**NO_CIE1931**|Do not use LED brightness [compensation](https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/) described in [CIE 1931](https://en.wikipedia.org/wiki/CIE_1931_color_space). Normally library would adjust every pixel's RGB888 so that luminance (or brightness control) for the corresponding LED's would appear 'linear' to the human's eye. I.e. a white dot with rgb(128,128,128) would seem to be at 50% brightness between rgb(0,0,0) and rgb(255,255,255). Normally you would like to keep this enabled by default. Not only it makes brightness control "linear", it also makes colours more vivid, otherwise it looks brighter but 'bleached'.|You might want to turn it off in some special cases like: <ul><li>Using some other overlay lib for intermediate calculations that makes it's own compensation, like FastLED's [dimming functions](http://fastled.io/docs/3.1/group___dimming.html).<li>running at low colour depth's - it **might** (or might not) look better in shadows, darker gradients w/o compensation, try it<li>you run for as bright output as possible, no matter what (make sure you have proper powering)<li>you run for speed/save resources at all costs</ul> |
| **FORCE_COLOR_DEPTH** |In some cases the library may reduce colour fidelity to increase the refresh rate (i.e. reduce visible flicker). This is most likely to occur with a large chain of panels. However, if you want to force pure 24bpp colour, at the expense of likely noticeable flicker, then set this defined. |Not required in 99% of cases.
| **SPIRAM_FRAMEBUFFER** |Use SPIRAM/PSRAM for the HUB75 DMA buffer and not internal SRAM. ONLY SUPPORTED ON ESP32-S3 VARIANTS WITH OCTAL (not quad!) SPIRAM/PSRAM, as ony OCTAL PSRAM an provide the required data rate / bandwidth to drive the panels adequately.|ONLY SUPPORTED ON ESP32-S3 VARIANTS WITH OCTAL (not quad) SPIRAM/PSRAM
## Build-time variables
| Flag | Description | Note |
| :------------ |---------------|-----|
| **PIXEL_COLOR_DEPTH_BITS=8** | Color depth per color per pixel in range 2-8. More bit's - more natural color. But on the other hand every additional bit:<ul><li>eats ~2.5 bits of DMA memory per pixel<li>reduces matrix refresh rate in power of two due to nature of [BCM](http://www.batsocks.co.uk/readme/art_bcm_5.htm)</ul> | For large chains of panels (i.e. 6 x 64x64 panels) you WILL need to reduce the colour depth, or likely run out of memory. Default is 8 bits per colour per pixel, i.e. TrueColor 24 bit RGB. <br><br>For higher resolutions, from 64x64 and above it is not possible to provide full 24 bits colour without significant flickering OR reducing dynamic range in shadows. In that case using 5-6 bits at high res make very small difference to the humans eye actually. Refer to the [I2S memcalc](i2s_memcalc.md) for more details.
| **PIXEL_COLOR_DEPTH_BITS=8** | Colour depth per pixel in range 2-8. More bit's - more natural colour. But on the other hand every additional bit:<ul><li>eats ~2.5 bits of DMA memory per pixel<li>reduces matrix refresh rate in power of two due to nature of [BCM](http://www.batsocks.co.uk/readme/art_bcm_5.htm)</ul> | For large chains of panels (i.e. 6 x 64x64 panels) you WILL need to reduce the colour depth, or likely run out of memory. Default is 8 bits per colour per pixel, i.e. True colour 24 bit RGB. <br><br>For higher resolutions, from 64x64 and above it is not possible to provide full 24 bits colour without significant flickering OR reducing dynamic range in shadows. In that case using 5-6 bits at high res make very small difference to the humans eye actually. Refer to the [I2S memcalc](i2s_memcalc.md) for more details.

BIN
doc/ScanRateGraphic.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

BIN
doc/ScanRateGraphic.odp Normal file

Binary file not shown.

View file

@ -2,12 +2,14 @@
* Description:
*
* The underlying implementation of the ESP32-HUB75-MatrixPanel-I2S-DMA only
* supports output to 1/16 or 1/32 scan panels - which means outputting
* two lines at the same time, 16 or 32 rows apart. This cannot be changed
* at the DMA layer as it would require a messy and complex rebuild of the
* library's DMA internals.
* supports output to HALF scan panels - which means outputting
* two lines at the same time, 16 or 32 rows apart if a 32px or 64px high panel
* respectively.
* This cannot be changed at the DMA layer as it would require a messy and complex
* rebuild of the library's internals.
*
* However, it is possible to connect 1/8 scan panels to this same library and
* However, it is possible to connect QUARTER (i.e. FOUR lines updated in parallel)
* scan panels to this same library and
* 'trick' the output to work correctly on these panels by way of adjusting the
* pixel co-ordinates that are 'sent' to the ESP32-HUB75-MatrixPanel-I2S-DMA
* library.
@ -39,7 +41,7 @@
MatrixPanel_I2S_DMA *dma_display = nullptr;
// placeholder for the virtual display object
VirtualMatrixPanel *OneEightMatrixDisplay = nullptr;
VirtualMatrixPanel *FourScanPanel = nullptr;
/******************************************************************************
* Setup!
@ -88,11 +90,11 @@
dma_display->clearScreen();
delay(500);
// create OneEightMatrixDisplaylay object based on our newly created dma_display object
OneEightMatrixDisplay = new VirtualMatrixPanel((*dma_display), NUM_ROWS, NUM_COLS, PANEL_RES_X, PANEL_RES_Y, SERPENT, TOPDOWN);
// create FourScanPanellay object based on our newly created dma_display object
FourScanPanel = new VirtualMatrixPanel((*dma_display), NUM_ROWS, NUM_COLS, PANEL_RES_X, PANEL_RES_Y, SERPENT, TOPDOWN);
// THE IMPORTANT BIT BELOW!
OneEightMatrixDisplay->setPhysicalPanelScanRate(ONE_EIGHT_32);
FourScanPanel->setPhysicalPanelScanRate(FOUR_SCAN_32PX_HIGH);
}
@ -111,7 +113,7 @@
// Try again using the pixel / dma memory remapper
for (int i=PANEL_RES_X+5; i< (PANEL_RES_X*2)-1; i++)
{
OneEightMatrixDisplay->drawLine(i, 0, i, 7, dma_display->color565(0, 0, 255)); // blue
FourScanPanel->drawLine(i, 0, i, 7, dma_display->color565(0, 0, 255)); // blue
delay(10);
}
*/
@ -120,10 +122,10 @@
int offset = PANEL_RES_X*((NUM_ROWS*NUM_COLS)-1);
for (int i=0; i< PANEL_RES_X; i++)
{
OneEightMatrixDisplay->drawLine(i+offset, 0, i+offset, 7, dma_display->color565(0, 0, 255)); // blue
OneEightMatrixDisplay->drawLine(i+offset, 8, i+offset, 15, dma_display->color565(0, 128,0)); // g
OneEightMatrixDisplay->drawLine(i+offset, 16, i+offset, 23, dma_display->color565(128, 0,0)); // red
OneEightMatrixDisplay->drawLine(i+offset, 24, i+offset, 31, dma_display->color565(0, 128, 128)); // blue
FourScanPanel->drawLine(i+offset, 0, i+offset, 7, dma_display->color565(0, 0, 255)); // blue
FourScanPanel->drawLine(i+offset, 8, i+offset, 15, dma_display->color565(0, 128,0)); // g
FourScanPanel->drawLine(i+offset, 16, i+offset, 23, dma_display->color565(128, 0,0)); // red
FourScanPanel->drawLine(i+offset, 24, i+offset, 31, dma_display->color565(0, 128, 128)); // blue
delay(10);
}
@ -134,15 +136,15 @@
// This only really works for a single horizontal chain
for (int i = 0; i < NUM_ROWS*NUM_COLS; i++)
{
OneEightMatrixDisplay->setTextColor(OneEightMatrixDisplay->color565(255, 255, 255));
OneEightMatrixDisplay->setCursor(i*PANEL_RES_X+7, OneEightMatrixDisplay->height()/3);
FourScanPanel->setTextColor(FourScanPanel->color565(255, 255, 255));
FourScanPanel->setCursor(i*PANEL_RES_X+7, FourScanPanel->height()/3);
// Red text inside red rect (2 pix in from edge)
OneEightMatrixDisplay->print("Panel " + String(i+1));
OneEightMatrixDisplay->drawRect(1,1, OneEightMatrixDisplay->width()-2, OneEightMatrixDisplay->height()-2, OneEightMatrixDisplay->color565(255,0,0));
FourScanPanel->print("Panel " + String(i+1));
FourScanPanel->drawRect(1,1, FourScanPanel->width()-2, FourScanPanel->height()-2, FourScanPanel->color565(255,0,0));
// White line from top left to bottom right
OneEightMatrixDisplay->drawLine(0,0, OneEightMatrixDisplay->width()-1, OneEightMatrixDisplay->height()-1, OneEightMatrixDisplay->color565(255,255,255));
FourScanPanel->drawLine(0,0, FourScanPanel->width()-1, FourScanPanel->height()-1, FourScanPanel->color565(255,255,255));
}
delay(2000);

View file

@ -1,7 +1,7 @@
# Using this library with 32x16 1/8 Scan Panels
## Problem
ESP32-HUB75-MatrixPanel-I2S-DMA library will not display output correctly with 1/8 scan panels such [as this](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/154) by default.
ESP32-HUB75-MatrixPanel-I2S-DMA library will not display output correctly with 'Four Scan' or 1/8 scan panels such [as this](https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/154) by default.
## Solution
It is possible to connect 1/8 scan panels to this library and 'trick' the output to work correctly on these panels by way of adjusting the pixel co-ordinates that are 'sent' to the underlying ESP32-HUB75-MatrixPanel-I2S-DMA library (in this example, it is the 'dmaOutput' class).

View file

@ -1,90 +1,23 @@
[platformio]
;default_envs = esp32
default_envs = esp32
description = HUB75 ESP32 I2S DMA test patterns example
;src_dir = src
[env]
framework = arduino
platform = espressif32
board = wemos_d1_mini32
lib_deps =
fastled/FastLED
Wire
adafruit/Adafruit BusIO
adafruit/Adafruit GFX Library
https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA.git
build_flags =
upload_speed = 460800
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
[env:esp32]
build_flags =
${env.build_flags}
-DTEST_FASTLINES
lib_deps =
${env.lib_deps}
Wire
adafruit/Adafruit BusIO
adafruit/Adafruit GFX Library
framework = arduino
[env:debug]
build_flags =
${env.build_flags}
-DTEST_FASTLINES
-DSERIAL_DEBUG
lib_deps =
${env.lib_deps}
Wire
adafruit/Adafruit BusIO
adafruit/Adafruit GFX Library
; build without GFX functions
[env:minimal]
build_flags =
${env.build_flags}
-DNO_GFX
-DNO_FAST_FUNCTIONS
-DNO_CIE1931
lib_deps =
${env.lib_deps}
; Virtual Panel test
[env:vpane]
build_flags =
${env.build_flags}
-DNO_FAST_FUNCTIONS
-DVIRTUAL_PANE
lib_deps =
${env.lib_deps}
Wire
adafruit/Adafruit BusIO
adafruit/Adafruit GFX Library
; Virtual Panel test
[env:vpane_minimal]
build_flags =
${env.build_flags}
-DVIRTUAL_PANE
-DNO_GFX
-DNO_FAST_FUNCTIONS
-DNO_CIE1931
lib_deps =
${env.lib_deps}
Wire
adafruit/Adafruit BusIO
adafruit/Adafruit GFX Library
; PIO CI can't handle IDF git modules properly (yet)
;[env:idfarduino]
;platform = espressif32
;platform_packages =
; ; use a special branch
; framework-arduinoespressif32 @ https://github.com/espressif/arduino-esp32.git#idf-release/v4.4
;framework = arduino, espidf
;build_flags =
; ${env.build_flags}
; -DARDUINO=200
; -DESP32
; ;-DUSE_FASTLINES
; -DNO_GFX
;lib_deps =
; ${env.lib_deps}
; https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA.git
[env:esp32idf]
framework = arduino, espidf

View file

@ -15,4 +15,5 @@ CONFIG_ARDUHAL_PARTITION_SCHEME="default"
CONFIG_AUTOCONNECT_WIFI=y
CONFIG_ARDUINO_SELECTIVE_WiFi=y
CONFIG_MBEDTLS_PSK_MODES=y
CONFIG_MBEDTLS_KEY_EXCHANGE_PSK=y
CONFIG_MBEDTLS_KEY_EXCHANGE_PSK=y
CONFIG_FREERTOS_HZ=1000

View file

@ -1,14 +1,14 @@
// How to use this library with a FM6126 panel, thanks goes to:
// https://github.com/hzeller/rpi-rgb-led-matrix/issues/746
/*
// IDF
#ifdef IDF_BUILD
#include <stdio.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <driver/gpio.h>
#include "sdkconfig.h"
*/
#endif
#include <Arduino.h>
#include "xtensa/core-macros.h"
#ifdef VIRTUAL_PANE
@ -241,7 +241,7 @@ void loop(){
delay(PATTERN_DELAY);
//
#ifdef TEST_FASTLINES
#ifndef NO_FAST_FUNCTIONS
// Fillrate for fillRect() function
Serial.print("Estimating fullscreen fillrate with fillRect() time: ");
t1 = micros();
@ -293,7 +293,7 @@ void loop(){
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
#ifdef TEST_FASTLINES
#ifndef NO_FAST_FUNCTIONS
Serial.println("Estimating V-lines with vlineDMA(): "); //
matrix->fillScreen(0);
color2 = random8();
@ -347,7 +347,7 @@ void loop(){
Serial.printf("%lu us, %u ticks\n", t2, ccount1);
delay(PATTERN_DELAY);
#ifdef TEST_FASTLINES
#ifndef NO_FAST_FUNCTIONS
Serial.println("Estimating H-lines with hlineDMA(): ");
matrix->fillScreen(0);
color2 = random8();

View file

@ -23,7 +23,7 @@
#endif
/* This library is designed to take an 8 bit / 1 byte value (0-255) for each R G B colour sub-pixel.
* The PIXEL_COLOUR_DEPTH_BITS should always be '8' as a result.
* The PIXEL_COLOR_DEPTH_BITS should always be '8' as a result.
* However, if the library is to be used with lower colour depth (i.e. 6 bit colour), then we need to ensure the 8-bit value passed to the colour masking
* is adjusted accordingly to ensure the LSB's are shifted left to MSB, by the difference. Otherwise the colours will be all screwed up.
*/
@ -38,10 +38,10 @@
//static constexpr uint8_t const MASK_OFFSET = 8-PIXEL_COLOUR_DEPTH_BITS;
/*
#if PIXEL_COLOUR_DEPTH_BITS < 8
#if PIXEL_COLOR_DEPTH_BITS < 8
uint8_t mask = (1 << (colour_depth_idx+MASK_OFFSET)); // expect 24 bit colour (8 bits per RGB subpixel)
#else
uint8_t mask = (1 << (colour_depth_idx)); // expect 24 bit color (8 bits per RGB subpixel)
uint8_t mask = (1 << (colour_depth_idx)); // expect 24 bit colour (8 bits per RGB subpixel)
#endif
*/
@ -61,11 +61,11 @@ bool MatrixPanel_I2S_DMA::allocateDMAmemory()
size_t allocated_fb_memory = 0;
for (int malloc_num =0; malloc_num < ROWS_PER_FRAME; ++malloc_num)
{
auto ptr = std::make_shared<rowBitStruct>(PIXELS_PER_ROW, PIXEL_COLOUR_DEPTH_BITS, m_cfg.double_buff);
auto ptr = std::make_shared<rowBitStruct>(PIXELS_PER_ROW, PIXEL_COLOR_DEPTH_BITS, m_cfg.double_buff);
if (ptr->data == nullptr)
{
ESP_LOGE("I2S-DMA", "CRITICAL ERROR: Not enough memory for requested colour depth! Please reduce PIXEL_COLOUR_DEPTH_BITS value.\r\n");
ESP_LOGE("I2S-DMA", "CRITICAL ERROR: Not enough memory for requested colour depth! Please reduce PIXEL_COLOR_DEPTH_BITS value.\r\n");
ESP_LOGE("I2S-DMA", "Could not allocate rowBitStruct %d!.\r\n", malloc_num);
return false;
@ -79,7 +79,7 @@ bool MatrixPanel_I2S_DMA::allocateDMAmemory()
ESP_LOGI("I2S-DMA", "Allocating %d bytes memory for DMA BCM framebuffer(s).", allocated_fb_memory);
// calculate the lowest LSBMSB_TRANSITION_BIT value that will fit in memory that will meet or exceed the configured refresh rate
#if !defined(FORCE_COLOUR_DEPTH)
#if !defined(FORCE_COLOR_DEPTH)
ESP_LOGI("I2S-DMA", "Minimum visual refresh rate (scan rate from panel top to bottom) requested: %d Hz", m_cfg.min_refresh_rate);
@ -88,11 +88,11 @@ bool MatrixPanel_I2S_DMA::allocateDMAmemory()
int nsPerLatch = ((PIXELS_PER_ROW + CLKS_DURING_LATCH) * psPerClock) / 1000;
// add time to shift out LSBs + LSB-MSB transition bit - this ignores fractions...
int nsPerRow = PIXEL_COLOUR_DEPTH_BITS * nsPerLatch;
int nsPerRow = PIXEL_COLOR_DEPTH_BITS * nsPerLatch;
// add time to shift out MSBs
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOUR_DEPTH_BITS; i++)
nsPerRow += (1<<(i - lsbMsbTransitionBit - 1)) * (PIXEL_COLOUR_DEPTH_BITS - i) * nsPerLatch;
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOR_DEPTH_BITS; i++)
nsPerRow += (1<<(i - lsbMsbTransitionBit - 1)) * (PIXEL_COLOR_DEPTH_BITS - i) * nsPerLatch;
int nsPerFrame = nsPerRow * ROWS_PER_FRAME;
int actualRefreshRate = 1000000000UL/(nsPerFrame);
@ -103,7 +103,7 @@ bool MatrixPanel_I2S_DMA::allocateDMAmemory()
if (actualRefreshRate > m_cfg.min_refresh_rate)
break;
if(lsbMsbTransitionBit < PIXEL_COLOUR_DEPTH_BITS - 1)
if(lsbMsbTransitionBit < PIXEL_COLOR_DEPTH_BITS - 1)
lsbMsbTransitionBit++;
else
break;
@ -122,7 +122,7 @@ bool MatrixPanel_I2S_DMA::allocateDMAmemory()
* memory allocation of the DMA linked list memory structure.
*/
int numDMAdescriptorsPerRow = 1;
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOUR_DEPTH_BITS; i++) {
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOR_DEPTH_BITS; i++) {
numDMAdescriptorsPerRow += (1<<(i - lsbMsbTransitionBit - 1));
}
@ -133,9 +133,9 @@ bool MatrixPanel_I2S_DMA::allocateDMAmemory()
if ( dma_buff.rowBits[0]->size() > DMA_MAX )
{
ESP_LOGW("I2S-DMA", "rowColorDepthStruct struct is too large, split DMA payload required. Adding %d DMA descriptors\n", PIXEL_COLOUR_DEPTH_BITS-1);
ESP_LOGW("I2S-DMA", "rowBits struct is too large to fit in one DMA transfer payload, splitting required. Adding %d DMA descriptors\n", PIXEL_COLOR_DEPTH_BITS-1);
numDMAdescriptorsPerRow += PIXEL_COLOUR_DEPTH_BITS-1;
numDMAdescriptorsPerRow += PIXEL_COLOR_DEPTH_BITS-1;
// Note: If numDMAdescriptorsPerRow is even just one descriptor too large, DMA linked list will not correctly loop.
}
@ -169,7 +169,7 @@ void MatrixPanel_I2S_DMA::configureDMA(const HUB75_I2S_CFG& _cfg)
int current_dmadescriptor_offset = 0;
// HACK: If we need to split the payload in 1/2 so that it doesn't breach DMA_MAX, lets do it by the colour_depth.
int num_dma_payload_colour_depths = PIXEL_COLOUR_DEPTH_BITS;
int num_dma_payload_colour_depths = PIXEL_COLOR_DEPTH_BITS;
if ( dma_buff.rowBits[0]->size() > DMA_MAX ) {
num_dma_payload_colour_depths = 1;
}
@ -195,7 +195,7 @@ void MatrixPanel_I2S_DMA::configureDMA(const HUB75_I2S_CFG& _cfg)
if ( dma_buff.rowBits[0]->size() > DMA_MAX )
{
for (int cd = 1; cd < PIXEL_COLOUR_DEPTH_BITS; cd++)
for (int cd = 1; cd < PIXEL_COLOR_DEPTH_BITS; cd++)
{
dma_bus.create_dma_desc_link(dma_buff.rowBits[row]->getDataPtr(cd, 0), dma_buff.rowBits[row]->size(num_dma_payload_colour_depths), false);
@ -209,7 +209,7 @@ void MatrixPanel_I2S_DMA::configureDMA(const HUB75_I2S_CFG& _cfg)
} // row depth struct
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOUR_DEPTH_BITS; i++)
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOR_DEPTH_BITS; i++)
{
// binary time division setup: we need 2 of bit (LSBMSB_TRANSITION_BIT + 1) four of (LSBMSB_TRANSITION_BIT + 2), etc
// because we sweep through to MSB each time, it divides the number of times we have to sweep in half (saving linked list RAM)
@ -217,10 +217,10 @@ void MatrixPanel_I2S_DMA::configureDMA(const HUB75_I2S_CFG& _cfg)
for(int k=0; k < (1<<(i - lsbMsbTransitionBit - 1)); k++)
{
dma_bus.create_dma_desc_link(dma_buff.rowBits[row]->getDataPtr(i, 0), dma_buff.rowBits[row]->size(PIXEL_COLOUR_DEPTH_BITS - i), false);
dma_bus.create_dma_desc_link(dma_buff.rowBits[row]->getDataPtr(i, 0), dma_buff.rowBits[row]->size(PIXEL_COLOR_DEPTH_BITS - i), false);
if (m_cfg.double_buff) {
dma_bus.create_dma_desc_link(dma_buff.rowBits[row]->getDataPtr(i, 1), dma_buff.rowBits[row]->size(PIXEL_COLOUR_DEPTH_BITS - i), true );
dma_bus.create_dma_desc_link(dma_buff.rowBits[row]->getDataPtr(i, 1), dma_buff.rowBits[row]->size(PIXEL_COLOR_DEPTH_BITS - i), true );
}
current_dmadescriptor_offset++;
@ -307,7 +307,7 @@ void IRAM_ATTR MatrixPanel_I2S_DMA::updateMatrixDMABuffer(uint16_t x_coord, uint
/* LED Brightness Compensation. Because if we do a basic "red & mask" for example,
* we'll NEVER send the dimmest possible colour, due to binary skew.
* i.e. It's almost impossible for colour_depth_idx of 0 to be sent out to the MATRIX unless the 'value' of a color is exactly '1'
* i.e. It's almost impossible for colour_depth_idx of 0 to be sent out to the MATRIX unless the 'value' of a colour is exactly '1'
* https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/
*/
uint16_t red16, green16, blue16;
@ -352,7 +352,7 @@ uint16_t red16, green16, blue16;
}
// Iterating through colour depth bits, which we assume are 8 bits per RGB subpixel (24bpp)
uint8_t colour_depth_idx = PIXEL_COLOUR_DEPTH_BITS;
uint8_t colour_depth_idx = PIXEL_COLOR_DEPTH_BITS;
do {
--colour_depth_idx;
/*
@ -377,7 +377,7 @@ uint16_t red16, green16, blue16;
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
// it would represent a vector pointing to the full row of pixels for the specified colour depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(y_coord, colour_depth_idx, back_buffer_id);
@ -410,13 +410,13 @@ uint16_t red16, green16, blue16;
blue16 = blue << 8;
#endif
for(uint8_t colour_depth_idx=0; colour_depth_idx<PIXEL_COLOUR_DEPTH_BITS; colour_depth_idx++) // color depth - 8 iterations
for(uint8_t colour_depth_idx=0; colour_depth_idx<PIXEL_COLOR_DEPTH_BITS; colour_depth_idx++) // colour depth - 8 iterations
{
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
uint16_t RGB_output_bits = 0;
// uint8_t mask = (1 << colour_depth_idx COLOR_DEPTH_LESS_THAN_8BIT_ADJUST); // 24 bit colour
// #if PIXEL_COLOUR_DEPTH_BITS < 8
// uint8_t mask = (1 << (colour_depth_idx+MASK_OFFSET)); // expect 24 bit color (8 bits per RGB subpixel)
// #if PIXEL_COLOR_DEPTH_BITS < 8
// uint8_t mask = (1 << (colour_depth_idx+MASK_OFFSET)); // expect 24 bit colour (8 bits per RGB subpixel)
// #else
// uint8_t mask = (1 << (colour_depth_idx)); // expect 24 bit colour (8 bits per RGB subpixel)
// #endif
@ -536,13 +536,13 @@ void MatrixPanel_I2S_DMA::clearFrameBuffer(bool _buff_id){
} // end SM5266P
// let's set LAT/OE control bits for specific pixels in each color_index subrows
// let's set LAT/OE control bits for specific pixels in each colour_index subrows
// Need to consider the original ESP32's (WROOM) DMA TX FIFO reordering of bytes...
uint8_t colouridx = dma_buff.rowBits[row_idx]->colour_depth;
do {
--colouridx;
// switch pointer to a row for a specific color index
// switch pointer to a row for a specific colour index
row = dma_buff.rowBits[row_idx]->getDataPtr(colouridx, _buff_id);
/*
@ -623,12 +623,12 @@ void MatrixPanel_I2S_DMA::brtCtrlOE(int brt, const bool _buff_id){
do {
--row_idx;
// let's set OE control bits for specific pixels in each color_index subrows
// let's set OE control bits for specific pixels in each colour_index subrows
uint8_t colouridx = dma_buff.rowBits[row_idx]->colour_depth;
do {
--colouridx;
// switch pointer to a row for a specific color index
// switch pointer to a row for a specific colour index
ESP32_I2S_DMA_STORAGE_TYPE* row = dma_buff.rowBits[row_idx]->getDataPtr(colouridx, _buff_id);
int x_coord = dma_buff.rowBits[row_idx]->width;
@ -674,7 +674,7 @@ void MatrixPanel_I2S_DMA::brtCtrlOE(int brt, const bool _buff_id){
} while(colouridx);
// switch pointer to a row for a specific color index
// switch pointer to a row for a specific colour index
#if defined(SPIRAM_DMA_BUFFER)
ESP32_I2S_DMA_STORAGE_TYPE* row_hack = dma_buff.rowBits[row_idx]->getDataPtr(colouridx, _buff_id);
Cache_WriteBack_Addr((uint32_t)row_hack, sizeof(ESP32_I2S_DMA_STORAGE_TYPE) * ((dma_buff.rowBits[row_idx]->width * dma_buff.rowBits[row_idx]->colour_depth)-1)) ;
@ -765,7 +765,7 @@ void MatrixPanel_I2S_DMA::brtCtrlOEv2(uint8_t brt, const int _buff_id) {
} while(colouridx);
// switch pointer to a row for a specific color index
// switch pointer to a row for a specific colour index
#if defined(SPIRAM_DMA_BUFFER)
ESP32_I2S_DMA_STORAGE_TYPE* row_hack = dma_buff.rowBits[row_idx]->getDataPtr(colouridx, _buff_id);
Cache_WriteBack_Addr((uint32_t)row_hack, sizeof(ESP32_I2S_DMA_STORAGE_TYPE) * ((dma_buff.rowBits[row_idx]->width * dma_buff.rowBits[row_idx]->colour_depth)-1)) ;
@ -824,7 +824,7 @@ uint8_t MatrixPanel_I2S_DMA::setLatBlanking(uint8_t pulses){
* @param x_coord - line start coordinate x
* @param y_coord - line start coordinate y
* @param l - line length
* @param r,g,b, - RGB888 color
* @param r,g,b, - RGB888 colour
*/
void MatrixPanel_I2S_DMA::hlineDMA(int16_t x_coord, int16_t y_coord, int16_t l, uint8_t red, uint8_t green, uint8_t blue){
if ( !initialized )
@ -859,18 +859,18 @@ uint16_t red16, green16, blue16;
y_coord -= ROWS_PER_FRAME;
}
// Iterating through color depth bits (8 iterations)
uint8_t colour_depth_idx = PIXEL_COLOUR_DEPTH_BITS;
// Iterating through colour depth bits (8 iterations)
uint8_t colour_depth_idx = PIXEL_COLOR_DEPTH_BITS;
do {
--colour_depth_idx;
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
uint16_t RGB_output_bits = 0;
// uint8_t mask = (1 << colour_depth_idx COLOR_DEPTH_LESS_THAN_8BIT_ADJUST);
// #if PIXEL_COLOUR_DEPTH_BITS < 8
// uint8_t mask = (1 << (colour_depth_idx+MASK_OFFSET)); // expect 24 bit color (8 bits per RGB subpixel)
// #if PIXEL_COLOR_DEPTH_BITS < 8
// uint8_t mask = (1 << (colour_depth_idx+MASK_OFFSET)); // expect 24 bit colour (8 bits per RGB subpixel)
// #else
// uint8_t mask = (1 << (colour_depth_idx)); // expect 24 bit color (8 bits per RGB subpixel)
// uint8_t mask = (1 << (colour_depth_idx)); // expect 24 bit colour (8 bits per RGB subpixel)
// #endif
uint16_t mask = PIXEL_COLOUR_MASK_BIT(colour_depth_idx);
@ -884,7 +884,7 @@ uint16_t red16, green16, blue16;
RGB_output_bits <<= _colourbitoffset; // shift color bits to the required position
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
// it would represent a vector pointing to the full row of pixels for the specified colour depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE *p = dma_buff.rowBits[y_coord]->getDataPtr(colour_depth_idx, back_buffer_id);
// inlined version works slower here, dunno why :(
// ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(y_coord, colour_depth_idx, back_buffer_id);
@ -904,10 +904,10 @@ uint16_t red16, green16, blue16;
*/
uint16_t &v = p[ESP32_TX_FIFO_POSITION_ADJUST(_x)];
v &= _colourbitclear; // reset color bits
v |= RGB_output_bits; // set new color bits
v &= _colourbitclear; // reset colour bits
v |= RGB_output_bits; // set new colour bits
} while(_l); // iterate pixels in a row
} while(colour_depth_idx); // end of color depth loop (8)
} while(colour_depth_idx); // end of colour depth loop (8)
} // hlineDMA()
@ -916,7 +916,7 @@ uint16_t red16, green16, blue16;
* @param x_coord - line start coordinate x
* @param y_coord - line start coordinate y
* @param l - line length
* @param r,g,b, - RGB888 color
* @param r,g,b, - RGB888 colour
*/
void MatrixPanel_I2S_DMA::vlineDMA(int16_t x_coord, int16_t y_coord, int16_t l, uint8_t red, uint8_t green, uint8_t blue){
if ( !initialized )
@ -950,16 +950,16 @@ uint16_t red16, green16, blue16;
*/
x_coord = ESP32_TX_FIFO_POSITION_ADJUST(x_coord);
uint8_t colour_depth_idx = PIXEL_COLOUR_DEPTH_BITS;
do { // Iterating through color depth bits (8 iterations)
uint8_t colour_depth_idx = PIXEL_COLOR_DEPTH_BITS;
do { // Iterating through colour depth bits (8 iterations)
--colour_depth_idx;
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
// uint8_t mask = (1 << colour_depth_idx COLOR_DEPTH_LESS_THAN_8BIT_ADJUST);
// #if PIXEL_COLOUR_DEPTH_BITS < 8
// uint8_t mask = (1 << (colour_depth_idx+MASK_OFFSET)); // expect 24 bit color (8 bits per RGB subpixel)
// #if PIXEL_COLOR_DEPTH_BITS < 8
// uint8_t mask = (1 << (colour_depth_idx+MASK_OFFSET)); // expect 24 bit colour (8 bits per RGB subpixel)
// #else
// uint8_t mask = (1 << (colour_depth_idx)); // expect 24 bit color (8 bits per RGB subpixel)
// uint8_t mask = (1 << (colour_depth_idx)); // expect 24 bit colour (8 bits per RGB subpixel)
// #endif
uint16_t mask = PIXEL_COLOUR_MASK_BIT(colour_depth_idx);
@ -984,7 +984,7 @@ uint16_t red16, green16, blue16;
}
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
// it would represent a vector pointing to the full row of pixels for the specified colour depth bit at Y coordinate
//ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(_y, colour_depth_idx, back_buffer_id);
ESP32_I2S_DMA_STORAGE_TYPE *p = dma_buff.rowBits[_y]->getDataPtr(colour_depth_idx, back_buffer_id);
@ -992,7 +992,7 @@ uint16_t red16, green16, blue16;
p[x_coord] |= RGB_output_bits; // set new RGB bits
++_y;
} while(++_l!=l); // iterate pixels in a col
} while(colour_depth_idx); // end of color depth loop (8)
} while(colour_depth_idx); // end of colour depth loop (8)
} // vlineDMA()
@ -1001,9 +1001,9 @@ uint16_t red16, green16, blue16;
* this works much faster than multiple consecutive per-pixel calls to updateMatrixDMABuffer()
* @param int16_t x, int16_t y - coordinates of a top-left corner
* @param int16_t w, int16_t h - width and height of a rectangular, min is 1 px
* @param uint8_t r - RGB888 color
* @param uint8_t g - RGB888 color
* @param uint8_t b - RGB888 color
* @param uint8_t r - RGB888 colour
* @param uint8_t g - RGB888 colour
* @param uint8_t b - RGB888 colour
*/
void MatrixPanel_I2S_DMA::fillRectDMA(int16_t x, int16_t y, int16_t w, int16_t h, uint8_t r, uint8_t g, uint8_t b){

View file

@ -67,10 +67,15 @@
// 8bit per RGB color = 24 bit/per pixel,
// can be extended to offer deeper colors, or
// might be reduced to save DMA RAM
#ifndef PIXEL_COLOUR_DEPTH_BITS
#define PIXEL_COLOUR_DEPTH_BITS 8
#ifdef PIXEL_COLOUR_DEPTH_BITS
#define PIXEL_COLOR_DEPTH_BITS PIXEL_COLOUR_DEPTH_BITS
#endif
#ifndef PIXEL_COLOR_DEPTH_BITS
#define PIXEL_COLOR_DEPTH_BITS 8
#endif
/***************************************************************************************/
/* Definitions below should NOT be ever changed without rewriting library logic */
#define ESP32_I2S_DMA_STORAGE_TYPE uint16_t // DMA output of one uint16_t at a time.
@ -125,7 +130,7 @@ struct rowBitStruct {
ESP32_I2S_DMA_STORAGE_TYPE *data;
/** @brief - returns size of row of data vectorfor a SINGLE buff
* size (in bytes) of a vector holding full DMA data for a row of pixels with _dpth color bits
* size (in bytes) of a vector holding full DMA data for a row of pixels with _dpth colour bits
* a SINGLE buffer only size is accounted, when using double buffers it actually takes twice as much space
* but returned size is for a half of double-buffer
*
@ -134,7 +139,7 @@ struct rowBitStruct {
*/
size_t size(uint8_t _dpth=0 ) { if (!_dpth) _dpth = colour_depth; return width * _dpth * sizeof(ESP32_I2S_DMA_STORAGE_TYPE); };
/** @brief - returns pointer to the row's data vector beginning at pixel[0] for _dpth color bit
/** @brief - returns pointer to the row's data vector beginning at pixel[0] for _dpth colour bit
* default - returns pointer to the data vector's head
* NOTE: this call might be very slow in loops. Due to poor instruction caching in esp32 it might be required a reread from flash
* every loop cycle, better use inlined #define instead in such cases
@ -171,7 +176,7 @@ struct rowBitStruct {
* are contained in parallel within the one uint16_t that is sent in parallel to the HUB75).
*
* This structure isn't actually allocated in one memory block anymore, as the library now allocates
* memory per row (per rowColorDepthStruct) instead.
* memory per row (per rowBits) instead.
*/
struct frameStruct {
uint8_t rows=0; // number of rows held in current frame, not used actually, just to keep the idea of struct
@ -225,7 +230,7 @@ struct HUB75_I2S_CFG {
/**
* I2S clock speed selector
*/
enum clk_speed {HZ_10M=10000000, HZ_15M=15000000, HZ_20M=20000000};
enum clk_speed {HZ_8M=8000000, HZ_10M=10000000, HZ_15M=15000000, HZ_20M=20000000};
// Structure Variables
@ -290,7 +295,8 @@ struct HUB75_I2S_CFG {
mx_height(_h),
chain_length(_chain),
gpio(_pinmap),
driver(_drv), i2sspeed(_i2sspeed),
driver(_drv),
i2sspeed(_i2sspeed),
double_buff(_dbuff),
latch_blanking(_latblk),
clkphase(_clockphase),
@ -365,6 +371,11 @@ class MatrixPanel_I2S_DMA {
if (m_cfg.driver)
shiftDriver(m_cfg);
#if defined(SPIRAM_DMA_BUFFER)
// Trick library into dropping colour depth slightly when using PSRAM.
// Actual output clockrate override occurs in configureDMA
m_cfg.i2sspeed = HUB75_I2S_CFG::HZ_8M;
#endif
/* As DMA buffers are dynamically allocated, we must allocated in begin()
* Ref: https://github.com/espressif/arduino-esp32/issues/831
@ -470,7 +481,7 @@ class MatrixPanel_I2S_DMA {
void drawIcon (int *ico, int16_t x, int16_t y, int16_t cols, int16_t rows);
// Color 444 is a 4 bit scale, so 0 to 15, color 565 takes a 0-255 bit value, so scale up by 255/15 (i.e. 17)!
// Colour 444 is a 4 bit scale, so 0 to 15, colour 565 takes a 0-255 bit value, so scale up by 255/15 (i.e. 17)!
static uint16_t color444(uint8_t r, uint8_t g, uint8_t b) { return color565(r*17,g*17,b*17); }
// Converts RGB888 to RGB565
@ -481,7 +492,7 @@ class MatrixPanel_I2S_DMA {
/**
* @brief - convert RGB565 to RGB888
* @param uint16_t color - RGB565 input color
* @param uint16_t colour - RGB565 input colour
* @param uint8_t &r, &g, &b - refs to variables where converted colors would be emplaced
*/
static void color565to888(const uint16_t color, uint8_t &r, uint8_t &g, uint8_t &b);
@ -620,9 +631,9 @@ class MatrixPanel_I2S_DMA {
Bus_Parallel16 dma_bus;
/**
* @brief - clears and reinitializes color/control data in DMA buffs
* @brief - clears and reinitializes colour/control data in DMA buffs
* When allocated, DMA buffs might be dirty, so we need to blank it and initialize ABCDE,LAT,OE control bits.
* Those control bits are constants during the entire DMA sweep and never changed when updating just pixel color data
* Those control bits are constants during the entire DMA sweep and never changed when updating just pixel colour data
* so we could set it once on DMA buffs initialization and forget.
* This effectively clears buffers to blank BLACK and makes it ready to display output.
* (Brightness control via OE bit manipulation is another case)
@ -636,7 +647,7 @@ class MatrixPanel_I2S_DMA {
void updateMatrixDMABuffer(uint8_t red, uint8_t green, uint8_t blue);
/**
* wipes DMA buffer(s) and reset all color/service bits
* wipes DMA buffer(s) and reset all colour/service bits
*/
inline void resetbuffers(){
@ -657,7 +668,7 @@ class MatrixPanel_I2S_DMA {
* @param x_ccord - line start coordinate x
* @param y_ccord - line start coordinate y
* @param l - line length
* @param r,g,b, - RGB888 color
* @param r,g,b, - RGB888 colour
*/
void hlineDMA(int16_t x_coord, int16_t y_coord, int16_t l, uint8_t red, uint8_t green, uint8_t blue);
@ -666,7 +677,7 @@ class MatrixPanel_I2S_DMA {
* @param x_ccord - line start coordinate x
* @param y_ccord - line start coordinate y
* @param l - line length
* @param r,g,b, - RGB888 color
* @param r,g,b, - RGB888 colour
*/
void vlineDMA(int16_t x_coord, int16_t y_coord, int16_t l, uint8_t red, uint8_t green, uint8_t blue);
@ -675,9 +686,9 @@ class MatrixPanel_I2S_DMA {
* uses Fast H/V line draw internally, works faster than multiple consecutive pixel by pixel calls to updateMatrixDMABuffer()
* @param int16_t x, int16_t y - coordinates of a top-left corner
* @param int16_t w, int16_t h - width and height of a rectangular, min is 1 px
* @param uint8_t r - RGB888 color
* @param uint8_t g - RGB888 color
* @param uint8_t b - RGB888 color
* @param uint8_t r - RGB888 colour
* @param uint8_t g - RGB888 colour
* @param uint8_t b - RGB888 colour
*/
void fillRectDMA(int16_t x_coord, int16_t y_coord, int16_t w, int16_t h, uint8_t r, uint8_t g, uint8_t b);
#endif
@ -761,7 +772,7 @@ class MatrixPanel_I2S_DMA {
/**
* @brief - convert RGB565 to RGB888
* @param uint16_t color - RGB565 input color
* @param uint16_t colour - RGB565 input colour
* @param uint8_t &r, &g, &b - refs to variables where converted colours would be emplaced
*/
inline void MatrixPanel_I2S_DMA::color565to888(const uint16_t color, uint8_t &r, uint8_t &g, uint8_t &b){
@ -810,7 +821,7 @@ inline void MatrixPanel_I2S_DMA::fillScreen(CRGB color)
#endif
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
// Pass 8-bit (each) R,G,B, get back 16-bit packed colour
//https://github.com/squix78/ILI9341Buffer/blob/master/ILI9341_SPI.cpp
inline uint16_t MatrixPanel_I2S_DMA::color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
@ -879,7 +890,7 @@ inline void MatrixPanel_I2S_DMA::drawIcon (int *ico, int16_t x, int16_t y, int16
only one line is showed at a time, and the display looks like every pixel is driven at the same time.
Now, the RGB inputs for these types of displays are digital, meaning each red, green and blue subpixel can only be on or off. This leads to a
color palette of 8 pixels, not enough to display nice pictures. To get around this, we use binary code modulation.
colour palette of 8 pixels, not enough to display nice pictures. To get around this, we use binary code modulation.
Binary code modulation is somewhat like PWM, but easier to implement in our case. First, we define the time we would refresh the display without
binary code modulation as the 'frame time'. For, say, a four-bit binary code modulation, the frame time is divided into 15 ticks of equal length.

View file

@ -9,9 +9,17 @@
grid.
However, the function of this class has expanded now to also manage
the output for 1/16 scan panels, as the core DMA library is designed
ONLY FOR 1/16 scan matrix panels.
the output for
1) HALF scan panels = Two rows updated in parallel.
* 64px high panel = (incorrectly) referred to as 1/32 scan
* 32px high panel = (incorrectly) referred to as 1/16 scan
* 16px high panel = (incorrectly) referred to as 1/8 scan
2) FOUR scan panels = Four rows updated in parallel
* 32px high panel = (incorrectly) referred to as 1/8 scan
* 16px high panel = (incorrectly) referred to as 1/4 scan
YouTube: https://www.youtube.com/brianlough
Tindie: https://www.tindie.com/stores/brianlough/
Twitter: https://twitter.com/witnessmenow
@ -36,9 +44,9 @@ struct VirtualCoords
enum PANEL_SCAN_RATE
{
NORMAL_ONE_SIXTEEN,
ONE_EIGHT_32,
ONE_EIGHT_16
NORMAL_TWO_SCAN, NORMAL_ONE_SIXTEEN, // treated as the same
FOUR_SCAN_32PX_HIGH,
FOUR_SCAN_16PX_HIGH
};
#ifdef USE_GFX_ROOT
@ -129,7 +137,7 @@ protected:
bool _chain_top_down = false; // is the ESP at the top or bottom of the matrix of devices?
bool _rotate = false;
PANEL_SCAN_RATE _panelScanRate = NORMAL_ONE_SIXTEEN;
PANEL_SCAN_RATE _panelScanRate = NORMAL_TWO_SCAN;
}; // end Class header
@ -198,18 +206,18 @@ inline VirtualCoords VirtualMatrixPanel::getCoords(int16_t &x, int16_t &y)
coords.y = (panelResY - 1) - coords.y;
}
/* START: Pixel remapping AGAIN to convert 1/16 SCAN output that the
/* START: Pixel remapping AGAIN to convert TWO parallel scanline output that the
* the underlying hardware library is designed for (because
* there's only 2 x RGB pins... and convert this to 1/8 or something
* there's only 2 x RGB pins... and convert this to 1/4 or something
*/
if (_panelScanRate == ONE_EIGHT_32)
if (_panelScanRate == FOUR_SCAN_32PX_HIGH)
{
/* Convert Real World 'VirtualMatrixPanel' co-ordinates (i.e. Real World pixel you're looking at
on the panel or chain of panels, per the chaining configuration) to a 1/8 panels
double 'stretched' and 'squished' coordinates which is what needs to be sent from the
DMA buffer.
Note: Look at the One_Eight_1_8_ScanPanel code and you'll see that the DMA buffer is setup
Note: Look at the FourScanPanel example code and you'll see that the DMA buffer is setup
as if the panel is 2 * W and 0.5 * H !
*/
@ -238,7 +246,7 @@ inline VirtualCoords VirtualMatrixPanel::getCoords(int16_t &x, int16_t &y)
Serial.print("to ("); Serial.print(coords.x, DEC); Serial.print(","); Serial.print(coords.y, DEC); Serial.println(") ");
*/
}
else if (_panelScanRate == ONE_EIGHT_16)
else if (_panelScanRate == FOUR_SCAN_16PX_HIGH)
{
if ((y & 8) == 0)
{

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View file

@ -291,7 +291,7 @@ static void IRAM_ATTR irq_hndlr(void* arg) { // if we use I2S1 (default)
///auto _div_num = 80000000L/freq;
ESP_LOGD("ESP32", "i2s pll_d2_clock clkm_div_num is: %d", _div_num);
ESP_LOGD("ESP32", "i2s pll_d2_clock clkm_div_num is: %ld", _div_num);
dev->clkm_conf.clka_en=1; // Use the 80mhz system clock (PLL_D2_CLK) when '0'
dev->clkm_conf.clkm_div_a = 1; // Clock denominator
@ -304,7 +304,7 @@ static void IRAM_ATTR irq_hndlr(void* arg) { // if we use I2S1 (default)
output_freq = output_freq + 0; // work around arudino 'unused var' issue if debug isn't enabled.
ESP_LOGI("ESP32/S2", "Output frequency is %d Mhz??", (output_freq/1000000/i2s_parallel_get_memory_width(ESP32_I2S_DEVICE, 16)));
ESP_LOGI("ESP32/S2", "Output frequency is %ld Mhz??", (output_freq/1000000/i2s_parallel_get_memory_width(ESP32_I2S_DEVICE, 16)));
// Setup i2s clock
@ -662,4 +662,4 @@ static void IRAM_ATTR irq_hndlr(void* arg) { // if we use I2S1 (default)
#endif
#endif

View file

@ -49,7 +49,9 @@ Contributors:
#define DMA_MAX (4096-4)
#define ESP32_I2S_DEVICE I2S_NUM_0
#ifndef ESP32_I2S_DEVICE
#define ESP32_I2S_DEVICE I2S_NUM_0
#endif
// The type used for this SoC
#define HUB75_DMA_DESCRIPTOR_T lldesc_t
@ -144,4 +146,4 @@ i2s_dev_t* getDev();
};
};

View file

@ -30,8 +30,8 @@
// static const char* TAG = "gdma_lcd_parallel16";
//#endif
static int _dmadesc_a_idx = 0;
static int _dmadesc_b_idx = 0;
//static int _dmadesc_a_idx = 0;
//static int _dmadesc_b_idx = 0;
dma_descriptor_t desc; // DMA descriptor for testing
@ -98,22 +98,44 @@
//LCD_CAM.lcd_clock.clk_en = 0; // Enable peripheral clock
// LCD_CAM_LCD_CLK_SEL Select LCD module source clock. 0: clock source is disabled. 1: XTAL_CLK. 2: PLL_D2_CLK. 3: PLL_F160M_CLK. (R/W)
LCD_CAM.lcd_clock.lcd_clk_sel = 2;
LCD_CAM.lcd_clock.lcd_clk_sel = 3; // Use 160Mhz Clock Source
LCD_CAM.lcd_clock.lcd_ck_out_edge = 0; // PCLK low in 1st half cycle
LCD_CAM.lcd_clock.lcd_ck_idle_edge = 0; // PCLK low idle
LCD_CAM.lcd_clock.lcd_clk_equ_sysclk = 0; // PCLK = CLK / (CLKCNT_N+1)
LCD_CAM.lcd_clock.lcd_clkcnt_n = 1; // Should never be zero
//LCD_CAM.lcd_clock.lcd_clk_equ_sysclk = 0; // PCLK = CLK / (CLKCNT_N+1)
LCD_CAM.lcd_clock.lcd_clk_equ_sysclk = 1; // PCLK = CLK / 1 (... so 160Mhz still)
if (_cfg.psram_clk_override) // fastest speed I can get PSRAM to work before nothing shows
{
LCD_CAM.lcd_clock.lcd_clkm_div_num = 4;
ESP_LOGI("S3", "DMA buffer is on PSRAM. Limiting clockspeed....");
LCD_CAM.lcd_clock.lcd_clkm_div_num = 10; //16mhz is the fasted the Octal PSRAM can support it seems
}
else
{
auto freq = (_cfg.bus_freq);
auto _div_num = 8; // 20Mhz
if (freq < 20000000L)
{
_div_num = 12; // 13Mhz
}
else if (freq > 20000000L)
{
_div_num = 6; // 26Mhz --- likely to have noise without a good connection
}
//LCD_CAM.lcd_clock.lcd_clkm_div_num = lcd_clkm_div_num;
LCD_CAM.lcd_clock.lcd_clkm_div_num = 3;
LCD_CAM.lcd_clock.lcd_clkm_div_num = _div_num; //3;
}
ESP_LOGI("S3", "Clock divider is %d", LCD_CAM.lcd_clock.lcd_clkm_div_num);
ESP_LOGI("S3", "Clock divider is %d", LCD_CAM.lcd_clock.lcd_clkm_div_num);
ESP_LOGD("S3", "Resulting output clock frequency: %ld Mhz", (160000000L/LCD_CAM.lcd_clock.lcd_clkm_div_num));
LCD_CAM.lcd_clock.lcd_clkm_div_a = 1; // 0/1 fractional divide
@ -441,4 +463,4 @@
} // end flip
#endif
#endif

View file

@ -157,8 +157,9 @@
gdma_channel_handle_t dma_chan;
uint32_t _dmadesc_count = 0; // number of dma decriptors
// uint32_t _dmadesc_a_idx = 0;
//uint32_t _dmadesc_b_idx = 0;
uint32_t _dmadesc_a_idx = 0;
uint32_t _dmadesc_b_idx = 0;
HUB75_DMA_DESCRIPTOR_T* _dmadesc_a = nullptr;
HUB75_DMA_DESCRIPTOR_T* _dmadesc_b = nullptr;