#include #include #include struct VirtualCoords { int16_t x; int16_t y; int16_t virt_row; // chain of panels row int16_t virt_col; // chain of panels col VirtualCoords() : x(0), y(0) { } }; enum PANEL_SCAN_RATE { NORMAL_TWO_SCAN, NORMAL_ONE_SIXTEEN, // treated as the same FOUR_SCAN_32PX_HIGH, FOUR_SCAN_16PX_HIGH }; // Chaining approach... From the perspective of the DISPLAY / LED side of the chain of panels. enum PANEL_CHAIN_TYPE { CHAIN_TOP_LEFT_DOWN, CHAIN_TOP_RIGHT_DOWN, CHAIN_BOTTOM_LEFT_UP, CHAIN_BOTTOM_RIGHT_UP, CHAIN_TOP_RIGHT_DOWN_ZZ /// ZigZag chaining. Might need a big ass cable to do this, all panels right way up. }; class VirtualMatrixPanelTest { public: VirtualMatrixPanelTest(int _vmodule_rows, int _vmodule_cols, int _panelResX, int _panelResY, PANEL_CHAIN_TYPE _panel_chain_type = CHAIN_TOP_RIGHT_DOWN) { panelResX = _panelResX; panelResY = _panelResY; vmodule_rows = _vmodule_rows; vmodule_cols = _vmodule_cols; virtualResX = vmodule_cols * _panelResX; virtualResY = vmodule_rows * _panelResY; dmaResX = panelResX * vmodule_rows * vmodule_cols; panel_chain_type = _panel_chain_type; /* Virtual Display width() and height() will return a real-world value. For example: * Virtual Display width: 128 * Virtual Display height: 64 * * So, not values that at 0 to X-1 */ coords.x = coords.y = -1; // By default use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer switch (panel_chain_type) { case CHAIN_TOP_LEFT_DOWN: chain_type_str = "CHAIN_TOP_LEFT_DOWN"; break; case CHAIN_TOP_RIGHT_DOWN: chain_type_str = "CHAIN_TOP_RIGHT_DOWN"; break; case CHAIN_TOP_RIGHT_DOWN_ZZ: chain_type_str = "CHAIN_TOP_RIGHT_DOWN_ZZ"; break; case CHAIN_BOTTOM_RIGHT_UP: chain_type_str = "CHAIN_BOTTOM_RIGHT_UP"; break; case CHAIN_BOTTOM_LEFT_UP: chain_type_str = "CHAIN_BOTTOM_LEFT_UP"; break; default: chain_type_str = "WTF!"; break; } std::cout << "\n\n***************************************************************************\n"; std::cout << "Chain type: " << chain_type_str << " "; std::printf("Testing chain of panels of %d rows, %d columns, %d px by %d px resolution. \n\n", vmodule_rows, vmodule_cols, panelResX, panelResX, panelResY); } // equivalent methods of the matrix library so it can be just swapped out. void drawPixel(int16_t x, int16_t y, int16_t expected_x, int16_t expected_y); std::string chain_type_str = "UNKNOWN"; // Internal co-ord conversion function VirtualCoords getCoords_Dev(int16_t x, int16_t y); VirtualCoords getCoords_WorkingBaslineMarch2023(int16_t x, int16_t y); VirtualCoords coords; private: int16_t virtualResX; int16_t virtualResY; int16_t vmodule_rows; int16_t vmodule_cols; int16_t panelResX; int16_t panelResY; int16_t dmaResX; // The width of the chain in pixels (as the DMA engine sees it) PANEL_CHAIN_TYPE panel_chain_type; PANEL_SCAN_RATE panel_scan_rate = NORMAL_TWO_SCAN; bool _rotate = false; }; // end Class header #include "baseline.hpp" /** * Development version for testing. */ inline VirtualCoords VirtualMatrixPanelTest::getCoords_Dev(int16_t virt_x, int16_t virt_y) { coords.x = coords.y = -1; // By defalt use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer if (virt_x < 0 || virt_x >= virtualResX || virt_y < 0 || virt_y >= virtualResY) { // Co-ordinates go from 0 to X-1 remember! otherwise they are out of range! return coords; } // Do we want to rotate? if (_rotate) { int16_t temp_x = virt_x; virt_x = virt_y; virt_y = virtualResY - 1 - temp_x; } int row = (virt_y / panelResY); // 0 indexed switch(panel_chain_type) { case (CHAIN_TOP_RIGHT_DOWN): { if ( (row % 2) == 1 ) { // upside down panel //Serial.printf("Condition 1, row %d ", row); // refersed for the row coords.x = dmaResX - virt_x - (row*virtualResX); // y co-ord inverted within the panel coords.y = panelResY - 1 - (virt_y % panelResY); } else { //Serial.printf("Condition 2, row %d ", row); coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x; coords.y = virt_y % panelResY; } } break; case (CHAIN_TOP_LEFT_DOWN): // OK -> modulus opposite of CHAIN_TOP_RIGHT_DOWN { if ( (row % 2) == 0 ) { // refersed panel //Serial.printf("Condition 1, row %d ", row); coords.x = dmaResX - virt_x - (row*virtualResX); // y co-ord inverted within the panel coords.y = panelResY - 1 - (virt_y % panelResY); } else { //Serial.printf("Condition 2, row %d ", row); coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x; coords.y = virt_y % panelResY; } } break; case (CHAIN_BOTTOM_LEFT_UP): // { row = vmodule_rows - row - 1; if ( (row % 2) == 1 ) { // Serial.printf("Condition 1, row %d ", row); coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x; coords.y = virt_y % panelResY; } else { // inverted panel // Serial.printf("Condition 2, row %d ", row); coords.x = dmaResX - (row*virtualResX) - virt_x; coords.y = panelResY - 1 - (virt_y % panelResY); } } break; case (CHAIN_BOTTOM_RIGHT_UP): // OK -> modulus opposite of CHAIN_BOTTOM_LEFT_UP { row = vmodule_rows - row - 1; if ( (row % 2) == 0 ) { // right side up // Serial.printf("Condition 1, row %d ", row); // refersed for the row coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x; coords.y = virt_y % panelResY; } else { // inverted panel // Serial.printf("Condition 2, row %d ", row); coords.x = dmaResX - (row*virtualResX) - virt_x; coords.y = panelResY - 1 - (virt_y % panelResY); } } break; case CHAIN_TOP_RIGHT_DOWN_ZZ: { // Right side up. Starting from top left all the way down. // Connected in a Zig Zag manner = some long ass cables being used potentially //Serial.printf("Condition 2, row %d ", row); coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x; coords.y = virt_y % panelResY; } default: return coords; break; } // end switch /* START: Pixel remapping AGAIN to convert TWO parallel scanline output that the * the underlying hardware library is designed for (because * there's only 2 x RGB pins... and convert this to 1/4 or something */ if (panel_scan_rate == FOUR_SCAN_32PX_HIGH) { /* Convert Real World 'VirtualMatrixPanel' co-ordinates (i.e. Real World pixel you're looking at on the panel or chain of panels, per the chaining configuration) to a 1/8 panels double 'stretched' and 'squished' coordinates which is what needs to be sent from the DMA buffer. Note: Look at the FourScanPanel example code and you'll see that the DMA buffer is setup as if the panel is 2 * W and 0.5 * H ! */ if ((virt_y & 8) == 0) { coords.x += ((coords.x / panelResX) + 1) * panelResX; // 1st, 3rd 'block' of 8 rows of pixels, offset by panel width in DMA buffer } else { coords.x += (coords.x / panelResX) * panelResX; // 2nd, 4th 'block' of 8 rows of pixels, offset by panel width in DMA buffer } // http://cpp.sh/4ak5u // Real number of DMA y rows is half reality // coords.y = (y / 16)*8 + (y & 0b00000111); coords.y = (virt_y >> 4) * 8 + (virt_y & 0b00000111); } else if (panel_scan_rate == FOUR_SCAN_16PX_HIGH) { if ((virt_y & 8) == 0) { coords.x += (panelResX >> 2) * (((coords.x & 0xFFF0) >> 4) + 1); // 1st, 3rd 'block' of 8 rows of pixels, offset by panel width in DMA buffer } else { coords.x += (panelResX >> 2) * (((coords.x & 0xFFF0) >> 4)); // 2nd, 4th 'block' of 8 rows of pixels, offset by panel width in DMA buffer } if (virt_y < 32) coords.y = (virt_y >> 4) * 8 + (virt_y & 0b00000111); else { coords.y = ((virt_y - 32) >> 4) * 8 + (virt_y & 0b00000111); coords.x += 256; } } return coords; } bool check(VirtualCoords expected, VirtualCoords result, int x = -1, int y = -1) { if ( result.x != expected.x || result.y != expected.y ) { std::printf("Requested (%d, %d) -> expecting physical (%d, %d) got (%d, %d).", x, y, expected.x, expected.y, result.x, result.y); std::cout << "\t *** FAIL ***\n "; std::cout << "\n"; return false; } else { return true; } } main(int argc, char* argv[]) { std::cout << "Starting Testing...\n"; std::list chain_t_test_list { CHAIN_TOP_LEFT_DOWN, CHAIN_TOP_RIGHT_DOWN, CHAIN_BOTTOM_LEFT_UP, CHAIN_BOTTOM_RIGHT_UP }; // Draw pixel at virtual position 70x, 70y = // x, y x, y // x == horizontal // y = vert :-) // 192 x 192 pixel virtual display int rows = 3; int cols = 3; int panel_width_x = 64; int panel_height_y = 64; std::string panel_scan_type = "NORMAL_TWO_SCAN"; for (auto chain_t : chain_t_test_list) { VirtualMatrixPanelTest test = VirtualMatrixPanelTest(rows,cols,panel_width_x,panel_height_y, chain_t); int pass_counter = 0; int fail_counter = 0; for (int16_t x = 0; x < panel_width_x*cols; x++) { for (int16_t y = 0; y < panel_height_y*rows; y++) { VirtualCoords expected = test.getCoords_WorkingBaslineMarch2023(x,y); VirtualCoords result = test.getCoords_Dev(x,y); bool chk_result = check(expected, result, x, y); if ( chk_result ) { fail_counter++; } else { pass_counter++; } } } if ( fail_counter > 0) { std::printf("ERROR: %d tests failed.\n", fail_counter); } else{ std::printf("SUCCESS: %d coord tests passed.\n", pass_counter); } } // end chain type test list std::cout << "Performing NON-SERPENTINE (ZIG ZAG) TEST"; rows = 3; cols = 1; panel_width_x = 64; panel_height_y = 64; VirtualMatrixPanelTest test = VirtualMatrixPanelTest(rows,cols,panel_width_x,panel_height_y, CHAIN_TOP_RIGHT_DOWN_ZZ); // CHAIN_TOP_RIGHT_DOWN_ZZ test 1 // (x,y) VirtualCoords result = test.getCoords_Dev(0,0); VirtualCoords expected; expected.x = 64*2; expected.y = 0; std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y); // CHAIN_TOP_RIGHT_DOWN_ZZ test 2 result = test.getCoords_Dev(10,64*3-1); expected.x = 10; expected.y = 63; std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y); // CHAIN_TOP_RIGHT_DOWN_ZZ test 3 result = test.getCoords_Dev(16,64*2-1); expected.x = 80; expected.y = 63; std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y); std::cout << "\n\n"; return 0; }