#ifndef _ESP32_ONE_EIGTH_MATRIX_PANEL_I2S_DMA #define _ESP32_ONE_EIGTH_MATRIX_PANEL_I2S_DMA #include "ESP32-HUB75-MatrixPanel-I2S-DMA.h" struct VirtualCoords { int16_t x; int16_t y; }; #ifdef USE_GFX_ROOT class OneEighthMatrixPanel : public GFX #elif !defined NO_GFX class OneEighthMatrixPanel : public Adafruit_GFX #else class OneEighthMatrixPanel #endif { public: int16_t virtualResX; int16_t virtualResY; int16_t vmodule_rows; int16_t vmodule_cols; int16_t panelResX; int16_t panelResY; MatrixPanel_I2S_DMA *display; OneEighthMatrixPanel(MatrixPanel_I2S_DMA &disp, int _vmodule_rows, int _vmodule_cols, int _panelResX, int _panelResY, bool serpentine_chain = true, bool top_down_chain = false) #ifdef USE_GFX_ROOT : GFX(_vmodule_cols*_panelResX, _vmodule_rows*_panelResY) #elif !defined NO_GFX : Adafruit_GFX(_vmodule_cols*_panelResX, _vmodule_rows*_panelResY) #endif { this->display = &disp; panelResX = _panelResX; panelResY = _panelResY; vmodule_rows = _vmodule_rows; vmodule_cols = _vmodule_cols; virtualResX = vmodule_cols*_panelResX; virtualResY = vmodule_rows*_panelResY; /* Virtual Display width() and height() will return a real-world value. For example: * Virtual Display width: 128 * Virtual Display height: 64 * * So, not values that at 0 to X-1 */ _s_chain_party = serpentine_chain; // serpentine, or 'S' chain? _chain_top_down= top_down_chain; coords.x = coords.y = -1; // By default use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer } VirtualCoords getCoords(int16_t x, int16_t y); // equivalent methods of the matrix library so it can be just swapped out. virtual void drawPixel(int16_t x, int16_t y, uint16_t color); virtual void fillScreen(uint16_t color); // overwrite adafruit implementation void clearScreen() { display->clearScreen(); } void drawPixelRGB888(int16_t x, int16_t y, uint8_t r, uint8_t g, uint8_t b); void drawIcon (int *ico, int16_t x, int16_t y, int16_t icon_cols, int16_t icon_rows); uint16_t color444(uint8_t r, uint8_t g, uint8_t b) { return display->color444(r, g, b); } uint16_t color565(uint8_t r, uint8_t g, uint8_t b) { return display->color565(r, g, b); } uint16_t color333(uint8_t r, uint8_t g, uint8_t b) { return display->color333(r, g, b); } void flipDMABuffer() { display->flipDMABuffer(); } // Rotate display inline void setRotate(bool rotate); private: VirtualCoords coords; bool _s_chain_party = true; // Are we chained? Ain't no party like a... bool _chain_top_down = false; // is the ESP at the top or bottom of the matrix of devices? bool _rotate = false; }; // end Class header /** * Calculate virtual->real co-ordinate mapping to underlying single chain of panels connected to ESP32. * Then do further calculations for 1/8 scan panel. * Updates the private class member variable 'coords', so no need to use the return value. * Not thread safe, but not a concern for ESP32 sketch anyway... I think. */ inline VirtualCoords OneEighthMatrixPanel::getCoords(int16_t x, int16_t y) { coords.x = coords.y = -1; // By default use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer // Check if virtual work co-ordinates are outside the virtual display resolution space. This does NOT check // against the physical real-world DMA matrix resolution / setup configured, that is used to actually output // the electrical pulse to the panel. if (x < 0 || x >= width() || y < 0 || y >= height() ) { // Co-ordinates go from 0 to X-1 remember! width() and height() are out of range! //Serial.printf("OneEighthMatrixPanel::getCoords(): Invalid virtual display coordinate. x,y: %d, %d\r\n", x, y); return coords; } // We want to rotate? if (_rotate){ uint16_t temp_x=x; x=y; y=virtualResY-1-temp_x; } uint8_t row = (y / panelResY) + 1; //a non indexed 0 row number //uint8_t col = (x / panelResX) + 1; //a non indexed 0 row number if( ( _s_chain_party && !_chain_top_down && (row % 2 == 0) ) // serpentine vertically stacked chain starting from bottom row (i.e. ESP closest to ground), upwards || ( _s_chain_party && _chain_top_down && (row % 2 != 0) ) // serpentine vertically stacked chain starting from the sky downwards ) { // First portion gets you to the correct offset for the row you need // Second portion inverts the x on the row coords.x = ((y / panelResY) * (virtualResX)) + (virtualResX - x) - 1; // inverts the y the row coords.y = panelResY - 1 - (y % panelResY); } else { // Normal chain pixel co-ordinate coords.x = x + ((y / panelResY) * (virtualResX)) ; coords.y = y % panelResY; } /* ******* * START: 1/8 Scan Panel Pixel Re-Mapping * * We have calculated the x, y co-ordinates as if we have a chain of standard panels this library is designed * for, this being 1/8 or 1/16 scan panels. We have to do some further hacking to convert co-ords to the * double length and 1/2 physical dma output length that is required for these panels to work electronically. */ // https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/154 // 1/8 Scan Panel - Is the final x-coord on the 1st or 3rd, 1/4ths (8 pixel 'blocks') of the panel (i.e. Row 0-7 or 17-24) ? // Double the length of the x-coord if required if ( ((coords.y /8) % 2) == 0) { // returns true/1 for the 1st and 3rd 8-pixel 1/4th of a 32px high panel coords.x += (panelResX); } coords.x += (panelResX)*2 * (panelResX)/x; // Half the y coord. coords.y = (y % 8); if ( y >= panelResY/2 ) coords.y +=8; // Push all the pixels across a bit more if we're on another column or row /* uint8_t module_num = (row*col)-1; if (module_num > 1) { //coords.x += ((panelResX)*2*(col*row))-1; } */ /* * END: 1/8 Scan Panel Pixel Re-Mapping * ******* */ // Reverse co-ordinates if panel chain from ESP starts from the TOP RIGHT /* if (_chain_top_down) { coords.x = (panelResX * vmodule_rows * vmodule_cols - 1) - coords.x; coords.y = (panelResY-1) - coords.y; } */ return coords; } inline void OneEighthMatrixPanel::drawPixel(int16_t x, int16_t y, uint16_t color) { //VirtualCoords coords = getCoords(x, y); getCoords(x, y); this->display->drawPixel(coords.x, coords.y, color); } inline void OneEighthMatrixPanel::fillScreen(uint16_t color) // adafruit virtual void override { // No need to map this. this->display->fillScreen(color); } inline void OneEighthMatrixPanel::drawPixelRGB888(int16_t x, int16_t y, uint8_t r, uint8_t g, uint8_t b) { //VirtualCoords coords = getCoords(x, y); getCoords(x, y); this->display->drawPixelRGB888( coords.x, coords.y, r, g, b); } inline void OneEighthMatrixPanel::setRotate(bool rotate) { _rotate=rotate; // We don't support rotation by degrees. if (rotate) { setRotation(1); } else { setRotation(0); } } // need to recreate this one, as it wouldn't work to just map where it starts. inline void OneEighthMatrixPanel::drawIcon (int *ico, int16_t x, int16_t y, int16_t icon_cols, int16_t icon_rows) { } #endif /* // http://cpp.sh/6skpy // Example program #include #include int main() { for (int i = 0; i < 32; i++) { int x = 0; int y = i; if ( ((y /8) % 2) == 0) { // returns true/1 for the 1st and 3rd 8-pixel 1/4th of a 32px high panel x += 64; } y = (i % 8); if ( i >= 32/2 ) y +=8; std::cout << "For input y = " << i << " mapping to y: " << y << " and x " << x << " \n"; } } For input y = 0 mapping to y: 0 and x 64 For input y = 1 mapping to y: 1 and x 64 For input y = 2 mapping to y: 2 and x 64 For input y = 3 mapping to y: 3 and x 64 For input y = 4 mapping to y: 4 and x 64 For input y = 5 mapping to y: 5 and x 64 For input y = 6 mapping to y: 6 and x 64 For input y = 7 mapping to y: 7 and x 64 For input y = 8 mapping to y: 0 and x 0 For input y = 9 mapping to y: 1 and x 0 For input y = 10 mapping to y: 2 and x 0 For input y = 11 mapping to y: 3 and x 0 For input y = 12 mapping to y: 4 and x 0 For input y = 13 mapping to y: 5 and x 0 For input y = 14 mapping to y: 6 and x 0 For input y = 15 mapping to y: 7 and x 0 For input y = 16 mapping to y: 8 and x 64 For input y = 17 mapping to y: 9 and x 64 For input y = 18 mapping to y: 10 and x 64 For input y = 19 mapping to y: 11 and x 64 For input y = 20 mapping to y: 12 and x 64 For input y = 21 mapping to y: 13 and x 64 For input y = 22 mapping to y: 14 and x 64 For input y = 23 mapping to y: 15 and x 64 For input y = 24 mapping to y: 8 and x 0 For input y = 25 mapping to y: 9 and x 0 For input y = 26 mapping to y: 10 and x 0 For input y = 27 mapping to y: 11 and x 0 For input y = 28 mapping to y: 12 and x 0 For input y = 29 mapping to y: 13 and x 0 For input y = 30 mapping to y: 14 and x 0 For input y = 31 mapping to y: 15 and x 0 */