ESP32-HUB75-MatrixPanel-DMA/testing/virtual.cpp
mrfaptastic fe5d414825 Add ZigZag options. Close #414
CHAIN_BOTTOM_RIGHT_UP_ZZ
CHAIN_TOP_RIGHT_DOWN_ZZ
2023-03-15 14:05:51 +00:00

459 lines
No EOL
12 KiB
C++

#include <iostream>
#include <string>
#include <list>
struct VirtualCoords
{
int16_t x;
int16_t y;
int16_t virt_row; // chain of panels row
int16_t virt_col; // chain of panels col
VirtualCoords() : x(0), y(0)
{
}
};
enum PANEL_SCAN_RATE
{
NORMAL_TWO_SCAN, NORMAL_ONE_SIXTEEN, // treated as the same
FOUR_SCAN_32PX_HIGH,
FOUR_SCAN_16PX_HIGH
};
// Chaining approach... From the perspective of the DISPLAY / LED side of the chain of panels.
enum PANEL_CHAIN_TYPE
{
CHAIN_TOP_LEFT_DOWN,
CHAIN_TOP_RIGHT_DOWN,
CHAIN_BOTTOM_LEFT_UP,
CHAIN_BOTTOM_RIGHT_UP,
CHAIN_TOP_RIGHT_DOWN_ZZ, /// ZigZag chaining. Might need a big ass cable to do this, all panels right way up.
CHAIN_BOTTOM_RIGHT_UP_ZZ
};
class VirtualMatrixPanelTest
{
public:
VirtualMatrixPanelTest(int _vmodule_rows, int _vmodule_cols, int _panelResX, int _panelResY, PANEL_CHAIN_TYPE _panel_chain_type = CHAIN_TOP_RIGHT_DOWN)
{
panelResX = _panelResX;
panelResY = _panelResY;
vmodule_rows = _vmodule_rows;
vmodule_cols = _vmodule_cols;
virtualResX = vmodule_cols * _panelResX;
virtualResY = vmodule_rows * _panelResY;
dmaResX = panelResX * vmodule_rows * vmodule_cols;
panel_chain_type = _panel_chain_type;
/* Virtual Display width() and height() will return a real-world value. For example:
* Virtual Display width: 128
* Virtual Display height: 64
*
* So, not values that at 0 to X-1
*/
coords.x = coords.y = -1; // By default use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer
switch (panel_chain_type) {
case CHAIN_TOP_LEFT_DOWN:
chain_type_str = "CHAIN_TOP_LEFT_DOWN";
break;
case CHAIN_TOP_RIGHT_DOWN:
chain_type_str = "CHAIN_TOP_RIGHT_DOWN";
break;
case CHAIN_TOP_RIGHT_DOWN_ZZ:
chain_type_str = "CHAIN_TOP_RIGHT_DOWN_ZZ";
break;
case CHAIN_BOTTOM_RIGHT_UP:
chain_type_str = "CHAIN_BOTTOM_RIGHT_UP";
break;
case CHAIN_BOTTOM_LEFT_UP:
chain_type_str = "CHAIN_BOTTOM_LEFT_UP";
break;
default:
chain_type_str = "WTF!";
break;
}
std::cout << "\n\n***************************************************************************\n";
std::cout << "Chain type: " << chain_type_str << " ";
std::printf("Testing chain of panels of %d rows, %d columns, %d px by %d px resolution. \n\n", vmodule_rows, vmodule_cols, panelResX, panelResX, panelResY);
}
// equivalent methods of the matrix library so it can be just swapped out.
void drawPixel(int16_t x, int16_t y, int16_t expected_x, int16_t expected_y);
std::string chain_type_str = "UNKNOWN";
// Internal co-ord conversion function
VirtualCoords getCoords_Dev(int16_t x, int16_t y);
VirtualCoords getCoords_WorkingBaslineMarch2023(int16_t x, int16_t y);
VirtualCoords coords;
private:
int16_t virtualResX;
int16_t virtualResY;
int16_t vmodule_rows;
int16_t vmodule_cols;
int16_t panelResX;
int16_t panelResY;
int16_t dmaResX; // The width of the chain in pixels (as the DMA engine sees it)
PANEL_CHAIN_TYPE panel_chain_type;
PANEL_SCAN_RATE panel_scan_rate = NORMAL_TWO_SCAN;
bool _rotate = false;
}; // end Class header
#include "baseline.hpp"
/**
* Development version for testing.
*/
inline VirtualCoords VirtualMatrixPanelTest::getCoords_Dev(int16_t virt_x, int16_t virt_y)
{
coords.x = coords.y = -1; // By defalt use an invalid co-ordinates that will be rejected by updateMatrixDMABuffer
if (virt_x < 0 || virt_x >= virtualResX || virt_y < 0 || virt_y >= virtualResY)
{ // Co-ordinates go from 0 to X-1 remember! otherwise they are out of range!
return coords;
}
// Do we want to rotate?
if (_rotate)
{
int16_t temp_x = virt_x;
virt_x = virt_y;
virt_y = virtualResY - 1 - temp_x;
}
int row = (virt_y / panelResY); // 0 indexed
switch(panel_chain_type)
{
case (CHAIN_TOP_RIGHT_DOWN):
{
if ( (row % 2) == 1 )
{ // upside down panel
//Serial.printf("Condition 1, row %d ", row);
// refersed for the row
coords.x = dmaResX - virt_x - (row*virtualResX);
// y co-ord inverted within the panel
coords.y = panelResY - 1 - (virt_y % panelResY);
}
else
{
//Serial.printf("Condition 2, row %d ", row);
coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x;
coords.y = virt_y % panelResY;
}
}
break;
case (CHAIN_TOP_LEFT_DOWN): // OK -> modulus opposite of CHAIN_TOP_RIGHT_DOWN
{
if ( (row % 2) == 0 )
{ // refersed panel
//Serial.printf("Condition 1, row %d ", row);
coords.x = dmaResX - virt_x - (row*virtualResX);
// y co-ord inverted within the panel
coords.y = panelResY - 1 - (virt_y % panelResY);
}
else
{
//Serial.printf("Condition 2, row %d ", row);
coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x;
coords.y = virt_y % panelResY;
}
}
break;
case (CHAIN_BOTTOM_LEFT_UP): //
{
row = vmodule_rows - row - 1;
if ( (row % 2) == 1 )
{
// Serial.printf("Condition 1, row %d ", row);
coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x;
coords.y = virt_y % panelResY;
}
else
{ // inverted panel
// Serial.printf("Condition 2, row %d ", row);
coords.x = dmaResX - (row*virtualResX) - virt_x;
coords.y = panelResY - 1 - (virt_y % panelResY);
}
}
break;
case (CHAIN_BOTTOM_RIGHT_UP): // OK -> modulus opposite of CHAIN_BOTTOM_LEFT_UP
{
row = vmodule_rows - row - 1;
if ( (row % 2) == 0 )
{ // right side up
// Serial.printf("Condition 1, row %d ", row);
// refersed for the row
coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x;
coords.y = virt_y % panelResY;
}
else
{ // inverted panel
// Serial.printf("Condition 2, row %d ", row);
coords.x = dmaResX - (row*virtualResX) - virt_x;
coords.y = panelResY - 1 - (virt_y % panelResY);
}
}
break;
case CHAIN_TOP_RIGHT_DOWN_ZZ:
{
// Right side up. Starting from top left all the way down.
// Connected in a Zig Zag manner = some long ass cables being used potentially
//Serial.printf("Condition 2, row %d ", row);
coords.x = ((vmodule_rows - (row+1))*virtualResX)+virt_x;
coords.y = virt_y % panelResY;
}
case CHAIN_BOTTOM_RIGHT_UP_ZZ:
{
// Right side up. Starting from top left all the way down.
// Connected in a Zig Zag manner = some long ass cables being used potentially
//Serial.printf("Condition 2, row %d ", row);
coords.x = (row*virtualResX)+virt_x;
coords.y = virt_y % panelResY;
}
default:
return coords;
break;
} // end switch
/* START: Pixel remapping AGAIN to convert TWO parallel scanline output that the
* the underlying hardware library is designed for (because
* there's only 2 x RGB pins... and convert this to 1/4 or something
*/
if (panel_scan_rate == FOUR_SCAN_32PX_HIGH)
{
/* Convert Real World 'VirtualMatrixPanel' co-ordinates (i.e. Real World pixel you're looking at
on the panel or chain of panels, per the chaining configuration) to a 1/8 panels
double 'stretched' and 'squished' coordinates which is what needs to be sent from the
DMA buffer.
Note: Look at the FourScanPanel example code and you'll see that the DMA buffer is setup
as if the panel is 2 * W and 0.5 * H !
*/
if ((virt_y & 8) == 0)
{
coords.x += ((coords.x / panelResX) + 1) * panelResX; // 1st, 3rd 'block' of 8 rows of pixels, offset by panel width in DMA buffer
}
else
{
coords.x += (coords.x / panelResX) * panelResX; // 2nd, 4th 'block' of 8 rows of pixels, offset by panel width in DMA buffer
}
// http://cpp.sh/4ak5u
// Real number of DMA y rows is half reality
// coords.y = (y / 16)*8 + (y & 0b00000111);
coords.y = (virt_y >> 4) * 8 + (virt_y & 0b00000111);
}
else if (panel_scan_rate == FOUR_SCAN_16PX_HIGH)
{
if ((virt_y & 8) == 0)
{
coords.x += (panelResX >> 2) * (((coords.x & 0xFFF0) >> 4) + 1); // 1st, 3rd 'block' of 8 rows of pixels, offset by panel width in DMA buffer
}
else
{
coords.x += (panelResX >> 2) * (((coords.x & 0xFFF0) >> 4)); // 2nd, 4th 'block' of 8 rows of pixels, offset by panel width in DMA buffer
}
if (virt_y < 32)
coords.y = (virt_y >> 4) * 8 + (virt_y & 0b00000111);
else
{
coords.y = ((virt_y - 32) >> 4) * 8 + (virt_y & 0b00000111);
coords.x += 256;
}
}
return coords;
}
bool check(VirtualCoords expected, VirtualCoords result, int x = -1, int y = -1)
{
if ( result.x != expected.x || result.y != expected.y )
{
std::printf("Requested (%d, %d) -> expecting physical (%d, %d) got (%d, %d).", x, y, expected.x, expected.y, result.x, result.y);
std::cout << "\t *** FAIL ***\n ";
std::cout << "\n";
return false;
}
else
{
return true;
}
}
main(int argc, char* argv[])
{
std::cout << "Starting Testing...\n";
std::list <PANEL_CHAIN_TYPE> chain_t_test_list { CHAIN_TOP_LEFT_DOWN, CHAIN_TOP_RIGHT_DOWN, CHAIN_BOTTOM_LEFT_UP, CHAIN_BOTTOM_RIGHT_UP };
// Draw pixel at virtual position 70x, 70y =
// x, y x, y
// x == horizontal
// y = vert :-)
// 192 x 192 pixel virtual display
int rows = 3;
int cols = 3;
int panel_width_x = 64;
int panel_height_y = 64;
std::string panel_scan_type = "NORMAL_TWO_SCAN";
for (auto chain_t : chain_t_test_list) {
VirtualMatrixPanelTest test = VirtualMatrixPanelTest(rows,cols,panel_width_x,panel_height_y, chain_t);
int pass_counter = 0;
int fail_counter = 0;
for (int16_t x = 0; x < panel_width_x*cols; x++)
{
for (int16_t y = 0; y < panel_height_y*rows; y++)
{
VirtualCoords expected = test.getCoords_WorkingBaslineMarch2023(x,y);
VirtualCoords result = test.getCoords_Dev(x,y);
bool chk_result = check(expected, result, x, y);
if ( chk_result )
{
fail_counter++;
}
else
{
pass_counter++;
}
}
}
if ( fail_counter > 0) {
std::printf("ERROR: %d tests failed.\n", fail_counter);
} else{
std::printf("SUCCESS: %d coord tests passed.\n", pass_counter);
}
} // end chain type test list
std::cout << "Performing NON-SERPENTINE (ZIG ZAG) TEST";
rows = 3;
cols = 1;
panel_width_x = 64;
panel_height_y = 64;
VirtualMatrixPanelTest test = VirtualMatrixPanelTest(rows,cols,panel_width_x,panel_height_y, CHAIN_TOP_RIGHT_DOWN_ZZ);
// CHAIN_TOP_RIGHT_DOWN_ZZ test 1
// (x,y)
VirtualCoords result = test.getCoords_Dev(0,0);
VirtualCoords expected; expected.x = 64*2; expected.y = 0;
std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y);
// CHAIN_TOP_RIGHT_DOWN_ZZ test 2
result = test.getCoords_Dev(10,64*3-1);
expected.x = 10; expected.y = 63;
std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y);
// CHAIN_TOP_RIGHT_DOWN_ZZ test 3
result = test.getCoords_Dev(16,64*2-1);
expected.x = 80; expected.y = 63;
std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y);
// CHAIN_BOTTOM_RIGHT_UP_ZZ test 4
result = test.getCoords_Dev(0,0);
expected.x = 0; expected.y = 0;
std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y);
// CHAIN_BOTTOM_RIGHT_UP_ZZ test 4
result = test.getCoords_Dev(63,64);
expected.x = 64*2-1; expected.y = 0;
std::printf("Expected physical (%d, %d) got (%d, %d).\n", expected.x, expected.y, result.x, result.y);
std::cout << "\n\n";
return 0;
}