IT-Security Tutorübung 06

Dorian Zedler

27. November 2023

Technische Universität München

Inhalt der Tutorübung

Aufgabe 1

Aufgabe 2

Aufgabe 3

Inhalt der Tutorübung

- Nachrichten Authentifizierungs-Codes (MACs)
- AEAD Chiffren
- Digitale Signaturen
- Pseudo-Zufallszahlengeneratoren (PRNGs)
- Diffie-Hellman Schlüsselaustausch

Aufgabe 1

Aufgabe 1a - MAC-Then-Enrypt

- a) In der Vorlesung haben Sie gelernt, dass bei der Generierung von MACs immer das Prinzip "Encrypt-Then-MAC" eingehalten werden sollte.
 Warum ist dies der Variante "MAC-Then-Encrypt" vorzuziehen? (Hinweis: Erinnern Sie sich an die Padding Oracle Aufgabe!)
 - Bei MAC-Then-Encrypt wird der MAC über den Klartext gebildet.
 Schritte um den MAC zu prüfen:
 - 1) Nachricht entschlüsseln
 - 2) MAC prüfen
 - → Padding Oracle Angriff möglich!
 - Bei Encrypt-Then-MAC wird der MAC über den Ciphertext gebildet.
 Schritte um den MAC zu prüfen:
 - 1) MAC prüfen
 - 2) Nachricht entschlüsseln
 - \rightarrow Padding Oracle Angriff nicht möglich!

Aufgabe 1b - AEAD Chiffren

- b) Was sind Vorteile einer AEAD Chiffre im Vergleich zu traditioneller, separater Verschlüsselung und Integritätsschutz mittels MACs?
 - Geringere Fehleranfälligkeit bei der Implementierung
 - Alle CIA Schutzziele werden abgedeckt
 - Nur ein Schlüssel wird benötigt
 - Potenziell effizienter als separate Verschlüsselung und MACs
 - Beispiel: AES-GCM

Aufgabe 1c - MACs vs. digitale Signaturen

- c) Grenzen Sie digitale Signaturen und MACs voneinander ab!
 - Digitale Signaturen:
 - o Asymmetrisch, Verifikation mit öffentlichem Schlüssel des Senders
 - Öffentlicher Schlüssel ist einer Person zugeordnet → signierte Nachricht kann eindeutig dem Abesender zugeordent werden!
 - o Schutzziele: Authentizität, Integrität, Verbindlichkeit
 - o Beispiel: Unterschreiben eines Vertrages

MACs:

- o Symmetrisch, Verifikation mit gemeinsamem, geheimem Schlüssel
- \circ Geheimer Schlüssel ist jedem Teilnehmer bekannt \to Nachricht kann nicht eindeutig zugeordnet werden!
- o Schutzziele: Integrität, Authentizität

Aufgabe 2

Aufgabe 2a - PRNGs

- a) Für welche kryptografischen Anwendungen benötigen Sie zufällige Werte, die ein Angreifer nicht erraten darf?
 - Schlüsselgenerierung
 - Initialisierungsvektoren
 - Seeds f
 ür sicheres Padding

Aufgabe 2 - PRNGs, was soll das?

- Zufallszahlen sind wichtig!
- Beispiele für Zufall:
 - Würfeln
 - o Rauschender Pin
 - Lavalampe

o Quantenphänomene, z.B. halbdurchlässiger Spiegel

- Zufall ist schwer und teuer zu erzeugen!
- Lösung: Pseudo-Zufallszahlengeneratoren (PRNGs)

Aufgabe 2 - PRNGs, wie geht das?

- PRNGs generieren, basierend auf einem zufälligen Seed, deterministisch Pseudo-Zufallszahlen.
- Beispiel: Xorshift32 (32-Bit)

```
state = ... # Seed the rng
2
    def 1132(x):
        return x & ((1 << 32) - 1)
5
    def randgen_xorshift32():
        global state
        x = state
8
    x = u32(x << 13):
    x = u32(x >> 17):
10
        x = u32(x << 5):
11
        state = x
12
        return x
13
```

 Wird in einer erweiterten Form im v8 JavaScript Engine für Math.random() verwendet

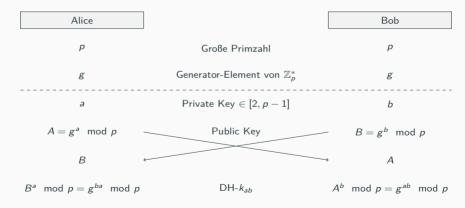
Aufgabe 2b - PRNGs in der Praxis

- b) Berechnen Sie die nächsten vier ausgegebenen Zufallszahlen für den Seed: 1.
 - 270369
 - 67634689
 - 2647435461
 - 307599695

- c) Bewerten Sie nun: Ist dies ein kryptografisch sicherer PRNG (CSPRNG) und wäre somit geeignet für die gerade gennanten Anwendungen? Prüfen Sie hierfür die Anforderungen aus der Vorlesung!
 - Vorraussetzungen:
 - o Zahlen dürfen keine Hinweise auf Nachfolger geben:
 - o Zahlen dürfen keine Hinweise auf Vorgänger geben:
 - Zahlen müssen statistisch gleichverteilt sein:

- c) Bewerten Sie nun: Ist dies ein kryptografisch sicherer PRNG (CSPRNG) und wäre somit geeignet für die gerade gennanten Anwendungen? Prüfen Sie hierfür die Anforderungen aus der Vorlesung!
 - Vorraussetzungen:
 - o Zahlen dürfen keine Hinweise auf Nachfolger geben:
 - o Zahlen dürfen keine Hinweise auf Vorgänger geben:
 - Zahlen müssen statistisch gleichverteilt sein:

- c) Bewerten Sie nun: Ist dies ein kryptografisch sicherer PRNG (CSPRNG) und wäre somit geeignet für die gerade gennanten Anwendungen? Prüfen Sie hierfür die Anforderungen aus der Vorlesung!
 - Vorraussetzungen:
 - o Zahlen dürfen keine Hinweise auf Nachfolger geben: *
 - ightarrowDa der gesamte innere Zustand des PRNGs bekannt ist, kann mit einer bekannten Zahl jede folgende berechnet werden.
 - o Zahlen dürfen keine Hinweise auf Vorgänger geben:
 - Zahlen müssen statistisch gleichverteilt sein:


- c) Bewerten Sie nun: Ist dies ein kryptografisch sicherer PRNG (CSPRNG) und wäre somit geeignet für die gerade gennanten Anwendungen? Prüfen Sie hierfür die Anforderungen aus der Vorlesung!
 - Vorraussetzungen:
 - o Zahlen dürfen keine Hinweise auf Nachfolger geben: *
 - ightarrowDa der gesamte innere Zustand des PRNGs bekannt ist, kann mit einer bekannten Zahl jede folgende berechnet werden.
 - o Zahlen dürfen keine Hinweise auf Vorgänger geben: *
 - ightarrowEine niedrige Zahl deutet darauf hin, dass die vorherige Zahl auch niedrig war.
 - o Zahlen müssen statistisch gleichverteilt sein:

- c) Bewerten Sie nun: Ist dies ein kryptografisch sicherer PRNG (CSPRNG) und wäre somit geeignet für die gerade gennanten Anwendungen? Prüfen Sie hierfür die Anforderungen aus der Vorlesung!
 - Vorraussetzungen:
 - o Zahlen dürfen keine Hinweise auf Nachfolger geben: *
 - ightarrowDa der gesamte innere Zustand des PRNGs bekannt ist, kann mit einer bekannten Zahl jede folgende berechnet werden.
 - o Zahlen dürfen keine Hinweise auf Vorgänger geben: *
 - \rightarrow Eine niedrige Zahl deutet darauf hin, dass die vorherige Zahl auch niedrig war.
 - o Zahlen müssen statistisch gleichverteilt sein: 🗸

- d) Würde es die kryptographische Sicherheit verbessern, wenn nicht x sondern x mod 16777217 ausgegeben wird?
 - Nein!
 - Wenn der interne Zustand kleiner als 16777217 ist
 - →Die Ausgabe ist gleich dem internen Zustand!
 - Wenn der interne Zustand größer als 16777217 ist
 - \circ Der interne Zustande ist gleich der Ausgabe $+x \cdot 16777217$
 - Wenn noch weitere Zahlen bekannt sind, kann man x berechnen!
 - \circ Sobald man x kennt, kann man alle folgenden Zahlen berechnen!

Aufgabe 3

- Problem: Austausch eines gemeinsamen Schlüssels über einen unsicheren Kanal
- Lösung: Diffie-Hellman Schlüsselaustausch

- Gegeben:
 - o Öffentliche Primzahl p = 89
 - \circ Generator-Element der zyklischen Gruppe \mathbb{Z}_{89}^* : g=28
 - a) Führen Sie das DH-Verfahren mit ihrem Tischnachbarn durch!

	Alice
Private Key	
Public Key	
DH-Secret	
	Bob
Private Key	Bob
Private Key Public Key	Bob

- Gegeben:
 - o Öffentliche Primzahl p = 89
 - \circ Generator-Element der zyklischen Gruppe \mathbb{Z}_{89}^* : g=28
 - a) Führen Sie das DH-Verfahren mit ihrem Tischnachbarn durch!

	Alice
Private Key	
Public Key	
DH-Secret	
	Bob
Private Key	Bob
Private Key Public Key	Bob

- Gegeben:
 - o Öffentliche Primzahl p = 89
 - $\circ\,$ Generator-Element der zyklischen Gruppe $\mathbb{Z}_{89}^*\colon g=28$
 - a) Führen Sie das DH-Verfahren mit ihrem Tischnachbarn durch!

	Alice
Private Key	a = 15
Public Key	
DH-Secret	
	Bob
Private Key	Bob b = 47
Private Key Public Key	

- Gegeben:
 - ∘ Öffentliche Primzahl *p* = 89
 - \circ Generator-Element der zyklischen Gruppe \mathbb{Z}_{89}^* : g=28
 - a) Führen Sie das DH-Verfahren mit ihrem Tischnachbarn durch!

	Alice
Private Key	a = 15
Public Key	$A = g^a \mod p = 28^{15} \mod 89 = 13$
DH-Secret	
	Bob
Private Key	b = 47
Public Key	$B = g^b \mod p = 28^{47} \mod 89 = 31$
DH-Secret	

- Gegeben:
 - ∘ Öffentliche Primzahl *p* = 89
 - \circ Generator-Element der zyklischen Gruppe \mathbb{Z}_{89}^* : g=28
 - a) Führen Sie das DH-Verfahren mit ihrem Tischnachbarn durch!

	Alice
Private Key	a = 15
Public Key	$A = g^a \mod p = 28^{15} \mod 89 = 13$
DH-Secret	$(g^b)^a \mod p = B^a \mod p = 31^15 \mod 89 = 28$
	Bob
	200
Private Key	b = 47
Private Key Public Key	

Aufgabe 3b - DH-Secret zu AES Schlüssel

- b) Nach der Durchführung haben Sie nun ein gemeinsames DH-Secret in Form eines Integers. Wie können Sie daraus einen AES Schlüssel generieren?
 - Umwandeln in Byte-Array
 - Verwenden als Input für eine Key-Derivation-Function (KDF), z.B. pbkdf2

Aufgabe 3c - Perfect Forward Secrecy

c) Erklären Sie das Konzept von Perfect Forward Secrecy (PFS)!

Aufgabe 3c - Perfect Forward Secrecy

- c) Erklären Sie das Konzept von Perfect Forward Secrecy (PFS)!
 - Beispiel: Schlüsselaustausch mit RSA
 - o Alice sendet Bob ihren öffentlichen Schlüssel
 - Bob verschlüsselt damit den gemeinsamen Schlüssel und sendet ihn an Alice
 - o Eve zeichnet alle Nachrichten auf
 - o Eve bricht in Alice Computer ein und stiehlt ihren privaten Schlüssel
 - Eve kann nun den gemeinsamen Schlüssel und damit auch alle folgenden Nachrichten entschlüsseln
 - PFS ist nur dann erfüllt, wenn Eve nach dem Einbruch in Alice Computer nicht in der Lage ist, alle aufgezeichneten Nachrichten zu entschlüsseln

Aufgabe 3c - Perfect Forward Secrecy

- c) Erklären Sie das Konzept von Perfect Forward Secrecy (PFS)!
 - Lösung: Schlüsselaustausch mit DH
 - Alice und Bob generieren für jeden Schlüsselaustausch ein neues DH-Secret
 - Nach dem Schlüsselaustausch werden die privaten DH-Parameter verworfen
 - o Eve zeichnet alle Nachrichten auf
 - o Eve bricht in Alice Computer ein und stiehlt ihr akruelles DH-Secret
 - Eve kann mit dem gestohlenen DH-Secret nur die aktuelle Nachricht entschlüsseln
 - Alle älteren und zukünftigen Nachrichten bleiben geheim!
 - → PFS ist erfüllt!

Aufgabe 3d - Perfect Forward Secrecy

- d) Unter welchen Vorraussetzungen bietet der DH-Schlüsselaustausch PFS?
 - Alice und Bob müssen für jeden Schlüsselaustausch ein neues DH-Secret generieren
 - Die privaten DH-Parameter müssen nach dem Schlüsselaustausch verworfen werden