Added Coderacer MKII Arduino files

This commit is contained in:
Jens Noack 2020-03-24 09:55:05 +01:00
parent 0281b9518d
commit 9fce3463a3
29 changed files with 2906 additions and 60 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,736 @@
// Übungen mit Lösungen
// Stand 20.11.2019
// Ergänze den Code für die Übungen an den Stellen wo die Übung formuliert ist, bzw. wo der Hinweis steht das der Code hier einesetzt werden soll.
// !!! Denke daran dir stets eine Sicherungskopie der letzten lauffähigen Programmversion abzulegen, also auch hiervon, bevor du weitermachst!!!
// Ich schlage vor jeweils das Datum in umgekehrter Reihenfolge anzuhängen. Für den 2. November 2019 also 191102.
// Dann werden die Programmversionen im File Exporer sortiert angezeigt. Wenn nötig kannst du zusätzlich die Uhrzeit anhängen.
//
// Einige Übungen sind einfach mit Copy und Paste zu erledigen. Aber auch das will gelent sein. Oft geht dabei was schief und es fehlt z.B.
// die schließende Klammer für einen Anweisungsblock. Wenn dir so etwas passiert oder sich aus anderen Gründen dein Code nicht mehr übersetzen lässt
// und du den Fehler nicht sofort findest Kommentier den betreffenden Teil, oder auch z.b. den ganzen Inhalt der switch Anweisung, mit /* und */ aus,
// so dass es sich wieder übersetzen lässt. Kommentier dann Bloch für Block oder auch zeile für zeile wieder ein indem du /* oder */ an eine andere Position setzt.
//
// Bedenke das zum Programmieren alle Microschalter in der Stellung 0 oder off stehen müssen. Wenn das nicht der Fall ist kann es sein das sich der ESP32 nicht programmieren lässt.
// Um dir die Arbeit zu erleichten kannst du den case 0 auskommentieren und den case in dem du die Übung bearbeitest vorübergehend zu case 0 machen. Das erspart das einstellen der Zahl.
// Schalterstellung Aktion
// 0000 Lauflicht
// 0001 measure battery voltage and show as bar
// 0010 move Servo
// 0011 measure distance and show as binary number
// 0100 measure distance and show as bar
// 0101 Motoren vorwärts
// 0110 Motoren rückwärts
// 0111 Motor Links vorwärts/rückwärts
// 1000 Motor Rechts vorwärts/rückwärts
// 1001 Fahren, 2 Sekunden nach loslassen der Taste_Links fährt der CodeRacer 5 Sekunden vorwärts
// 1010 Variable Geschwindigkeit für beide Motoren und anzeigen des Zählers mit den LEDs
// 1011 x
// 1100 x
// 1101 x
// 1110 x
// 1111 x
// Übung 0, case 0, CProgrammiere die Funktion Lauflicht. Den Rumpf des Unterprogramms findest du im Abschnitt Subroutines.
// Übung 1, case 4, case 3 als Balken Anzeige für die Werteintervalle bis 4, 8, 12, 16, 20, 24
// Übung 2, case 5, Ergänzen für den rechten Motor
// Übung 3, case 6, case 5 ändern für Motoren rückwärts
// Übung 4, case 7, linker Motor vorwärts wenn Taste_Links gedrückt und rückwärts wenn Taste_Rechts gedrückt
// Übung 5, case 8, rechter Motor vorwärts wenn Taste_Links gedrückt und rückwärts wenn Taste_Rechts gedrückt
// Übung 6, case 9, 2 Sekunden nach loslassen der Taste_Links soll der CodeRacer 5 Sekunden vorwärts fahren und dann wieder halten
//Schreibe Funktionen MotorLinks(byte Richtung, byte Speed) und MotorRechts(byte Richtung, byte Speed)
//Ersetze die Befehle um die Motoren anzusteuern im gesamten Programm durch diese Funktionen.
//CodeRacer um ein Rad drehen
//Ein Rad steht still. Das andere Rad läuft vorwärts. Wie lange muss man den Motor eingeschaltet lassen , bzw. wie viele Impulse abwarten, bis das Fahrzeug wieder an der ursprünglichen Position steht?
//CodeRacer auf der Stelle drehen
//Beide Räder drehen sich in entgegengesetzte Richtung. Das Fahrzeug dreht sich auf der Stelle. Wie lange muss man den Motor eingeschaltet lassen , bzw. wie viele Impulse abwarten, bis das Fahrzeug wieder an der ursprünglichen Position steht?
//Quadrat abfahren
//Der CodeRacer soll 50cm geradeaus fahren, dann um 90\[Degree] drehen, wieder 50cm geradeaus fahren und so weiter bis es wieder auf der Ausgangsposition steht.
// Arduino Code für CodeRacer MK II des MakerLab Murnau
// Testen der Hardware des CodeRacers
//------------------------------------------------------------------------------------------------------------------------
#include <ESP32Servo.h>
#include "esp32-hal-ledc.h"
//-- Pin Zuordnung -------------------------------------------------------------------------------------------------------
#define LED_1 32 // Pins an dem die LEDs angeschlossen sind
#define LED_2 33
#define LED_3 25
#define LED_4 27
#define LED_5 14
#define LED_6 12
#define Taster_Links 13 // Pins an denen die Schalter angeschlossen sind
#define Taster_Rechts 16
#define Schalter_1 4
#define Schalter_2 0
#define Schalter_3 2
#define Schalter_4 15
#define SERVO_Pin 18 // Pin an dem der Servo angeschlossen ist
#define Trigger 21 // Pin an denen der Ultraschallabstandssensor angeschlossen ist
#define Echo 17
#define Motor_Links_Ein 23 // Pins an denen die Motore angeschlossen sind
#define Motor_Links_VorwaertsRueckwaerts 22
#define Motor_Rechts_Ein 5
#define Motor_Rechts_VorwaertsRueckwaerts 19
#define Geschwindigkeit_Links 34 // Pins an denen die Geschwindigkeitssensoren angeschlossen sind
#define Geschwindigkeit_Rechts 35
#define Abstand_Hinten_Links x // Pins an denen die Abstandssensoren hinten angeschlossen sind
#define Abstand_Hinten_Rechts x
#define Batteriespannung 26 // Pin an dem der Spannungsteiler für die Batterie Spannung angeschlossen ist
#define PWM_Links 5 // Zuordnung der PWM Kanäle
#define PWM_Rechts 6
//-- Defines --------------------------------------------------------------------------------------------------------------------
#define LEDon 100 // 100ms eingeschaltet
#define LEDoff 50 // 50ms ausgeschaltet
#define Vorwaerts HIGH
#define Rueckwaerts LOW
//-- Globale Variables ----------------------------------------------------------------------------------------------------------
int i, Number, Schalter;
volatile unsigned int StL, StR;
volatile unsigned int StepsL, StepsR;
volatile unsigned long timeL, timeR, timeLPrev, timeRPrev;
volatile unsigned long countL, countR;
volatile unsigned int diffL, diffR;
volatile boolean isrRFlag, isrLFlag;
Servo servo;
//-- Subroutines ----------------------------------------------------------------------------------------------------------------
long measureDistance()
{ long dist, duration;
pinMode(Echo, INPUT);
digitalWrite(Trigger, LOW);
delayMicroseconds(2);
digitalWrite(Trigger, HIGH);
delayMicroseconds(10);
digitalWrite(Trigger, LOW);
duration=pulseIn(Echo,HIGH);
dist=duration/2*0.0344;
return(dist);
}
void Lauflicht()
{ // Ergänze hier den Code für Übung 0
digitalWrite(LED_1,HIGH);
delay(LEDon);
digitalWrite(LED_1,LOW);
delay(LEDoff);
digitalWrite(LED_2,HIGH);
delay(LEDon);
digitalWrite(LED_2,LOW);
delay(LEDoff);
digitalWrite(LED_3,HIGH);
delay(LEDon);
digitalWrite(LED_3,LOW);
delay(LEDoff);
digitalWrite(LED_4,HIGH);
delay(LEDon);
digitalWrite(LED_4,LOW);
delay(LEDoff);
digitalWrite(LED_5,HIGH);
delay(LEDon);
digitalWrite(LED_5,LOW);
delay(LEDoff);
digitalWrite(LED_6,HIGH);
delay(LEDon);
digitalWrite(LED_6,LOW);
delay(LEDoff);
}
void LEDsoff()
{ digitalWrite(LED_1,LOW);
digitalWrite(LED_2,LOW);
digitalWrite(LED_3,LOW);
digitalWrite(LED_4,LOW);
digitalWrite(LED_5,LOW);
digitalWrite(LED_6,LOW);
}
void ShowDistance(int distance)
{ digitalWrite(LED_1, bitRead(distance,6));
digitalWrite(LED_2, bitRead(distance,5));
digitalWrite(LED_3, bitRead(distance,4));
digitalWrite(LED_4, bitRead(distance,3));
digitalWrite(LED_5, bitRead(distance,2));
digitalWrite(LED_6, bitRead(distance,1));
};
void MotorLinks(byte Richtung, byte Speed)
{ digitalWrite(Motor_Links_VorwaertsRueckwaerts, Richtung);
ledcWrite(PWM_Links, Speed);
}
void MotorRechts(byte Richtung, byte Speed)
{ digitalWrite(Motor_Rechts_VorwaertsRueckwaerts, Richtung);
ledcWrite(PWM_Rechts, Speed);
}
void DreheLinks(int steps)
{ int StartR;
StartR = countR;
digitalWrite(Motor_Links_VorwaertsRueckwaerts, HIGH);
digitalWrite(Motor_Rechts_VorwaertsRueckwaerts,HIGH);
ledcWrite(PWM_Links, 0);
ledcWrite(PWM_Rechts, 80);
while ( (countR-StartR)<steps ) {};
ledcWrite(PWM_Links, 0);
ledcWrite(PWM_Rechts, 0);
}
void DreheRechts(int steps)
{ int StartL;
StartL = countL;
digitalWrite(Motor_Links_VorwaertsRueckwaerts, HIGH);
digitalWrite(Motor_Rechts_VorwaertsRueckwaerts,HIGH);
ledcWrite(PWM_Links, 85);
ledcWrite(PWM_Rechts, 0);
while ( (countL-StartL)<steps ) {};
ledcWrite(PWM_Links, 0);
ledcWrite(PWM_Rechts, 0);
}
void IRAM_ATTR detectStepL()
{ timeL = micros();
diffL = timeL - timeLPrev;
timeLPrev = timeL;
countL++;
isrLFlag = true;
}
void IRAM_ATTR detectStepR()
{ timeR = micros();
diffR = timeR - timeRPrev;
timeRPrev = timeR;
countR++;
isrRFlag = true;
}
//-- Setup ----------------------------------------------------------------------------------------------------------------
void setup()
{ Serial.begin(115200); // Serielle Schnittstelle aktivieren, Erstellungsdatum senden
Serial.println("Build "+String(__DATE__)+" "+String(__TIME__)+"\n");
pinMode(LED_1, OUTPUT); // LED Pins als Ausgang setzen und LEDs ausschalten
digitalWrite(LED_1,LOW);
pinMode(LED_2, OUTPUT);
digitalWrite(LED_2,LOW);
pinMode(LED_3, OUTPUT);
digitalWrite(LED_3,LOW);
pinMode(LED_4, OUTPUT);
digitalWrite(LED_4,LOW);
pinMode(LED_5, OUTPUT);
digitalWrite(LED_5,LOW);
pinMode(LED_6, OUTPUT);
digitalWrite(LED_6,LOW);
pinMode(Taster_Links, INPUT_PULLUP); // Taster Pins als Eingang setzen
pinMode(Taster_Rechts, INPUT_PULLUP);
pinMode(Schalter_1, INPUT_PULLUP); // Schalter Pins als Eingang setzen
pinMode(Schalter_2, INPUT_PULLUP);
pinMode(Schalter_3, INPUT_PULLUP);
pinMode(Schalter_4, INPUT_PULLUP);
servo.attach(SERVO_Pin); // Pin für Servo setzen
pinMode(Trigger, OUTPUT); // Pins für Ultraschallsensor setzen
digitalWrite(Trigger,LOW);
pinMode(Echo, INPUT);
pinMode(Motor_Links_Ein, OUTPUT); digitalWrite(Motor_Links_Ein,LOW); // Pins für Motore setzen
pinMode(Motor_Links_VorwaertsRueckwaerts, OUTPUT); digitalWrite(Motor_Links_VorwaertsRueckwaerts,LOW);
pinMode(Motor_Rechts_Ein, OUTPUT); digitalWrite(Motor_Rechts_Ein,LOW);
pinMode(Motor_Rechts_VorwaertsRueckwaerts, OUTPUT); digitalWrite(Motor_Rechts_VorwaertsRueckwaerts,LOW);
ledcSetup(PWM_Links, 100, 8);
ledcAttachPin(Motor_Links_Ein, PWM_Links);
ledcWrite(PWM_Links, 0);
ledcSetup(PWM_Rechts, 100, 8);
ledcAttachPin(Motor_Rechts_Ein, PWM_Rechts);
ledcWrite(PWM_Rechts, 0);
// ledcSetup(7, 50, 8);
// ledcAttachPin(LED_6, 7);
// ledcWrite(7, 127);
pinMode(Geschwindigkeit_Links , INPUT); // Pins für Geschwindigkeitssensoren setzen und mit Interrupt Service Routine verknüpfen
pinMode(Geschwindigkeit_Rechts, INPUT);
attachInterrupt(digitalPinToInterrupt(Geschwindigkeit_Links ), detectStepL, RISING);
attachInterrupt(digitalPinToInterrupt(Geschwindigkeit_Rechts), detectStepR, RISING);
}
//-- Main ----------------------------------------------------------------------------------------------------------------
void loop(void)
{ byte TL, TR, S1, S2, S3, S4, b, brightness;
int speed, speedSet, speedSetL, speedSetR, speedL, speedR, g, minspeed, maxspeed, distance;
int DistanceL, DistanceR;
unsigned int StartL, StartR;
while (true)
{ servo.write(90);
TL = !digitalRead(Taster_Links );
TR = !digitalRead(Taster_Rechts);
S1 = !digitalRead(Schalter_1 );
S2 = !digitalRead(Schalter_2 );
S3 = !digitalRead(Schalter_3 );
S4 = !digitalRead(Schalter_4 );
Schalter = (S1<<3) | (S2<<2) | (S3<<1) | S4;
//Serial.println(Schalter);
switch(Schalter)
{ case 0: // Hindernissparcour 0
{ while( (distance=measureDistance()) > 15 ) // 7 ~ 10cm
{ ShowDistance(distance);
MotorLinks(Vorwaerts, 100);
MotorRechts(Vorwaerts, 100);
};
MotorLinks(Vorwaerts, 0);
MotorRechts(Vorwaerts, 0);
ShowDistance(distance);
servo.write(180);
delay(400);
DistanceL=measureDistance();
servo.write(0);
delay(400);
DistanceR=measureDistance();
servo.write(90);
delay(400);
if( DistanceL<DistanceR )
{ // drehe nach rechts
DreheRechts(16);
}
else
{ // drehe nach linhs
DreheLinks(16);
};
break;
};
/*case 15: //----------------------------------------------- Lauflicht
}
{ delay(100);
// Übung 0, Programmiere die Funktion Lauflicht. Den Rumpf des Unterprogramms findest du im Abschnitt Subroutines.
Lauflicht();
break;
};*/
/* case 1: //----------------------------------------------- measure battery voltage and show as bar
{ //delay(1000);
//LEDsoff();
ledcSetup(7, 50, 8);
ledcAttachPin(LED_6, 7);
for( brightness = 255; brightness > 0; brightness = brightness - 1)
{ delay(10);
ledcWrite(7, brightness);
};
for( brightness = 0; brightness < 254; brightness = brightness + 1)
{ delay(10);
ledcWrite(7, brightness);
};
ledcDetachPin(LED_6);
pinMode(LED_6, OUTPUT);
digitalWrite(LED_6,LOW);
break;
};*/
case 2: //----------------------------------------------- move Servo
{ LEDsoff(); delay(100);
if( TL && TR )
{ servo.write(90);
break;
}
else if( TL )
{ servo.write(180);
break;
}
else if( TR )
{ servo.write(0);
break;
}
else
{ break;
};
};
case 3: //----------------------------------------------- measure distance and show as binary number
{ delay(200);
distance = measureDistance();
Serial.println(distance);
digitalWrite(LED_1, bitRead(distance,6));
digitalWrite(LED_2, bitRead(distance,5));
digitalWrite(LED_3, bitRead(distance,4));
digitalWrite(LED_4, bitRead(distance,3));
digitalWrite(LED_5, bitRead(distance,2));
digitalWrite(LED_6, bitRead(distance,1));
break;
};
case 4: //----------------------------------------------- measure distance and show as bar
{ delay(200);
distance = measureDistance();
Serial.println(distance);
// Übung 1, case 3 als Balken Anzeige für die Werteintervalle bis 4, 8, 12, 16, 20, 24
digitalWrite(LED_6, distance > 4 );
digitalWrite(LED_5, distance > 8 );
digitalWrite(LED_4, distance > 12 );
digitalWrite(LED_3, distance > 16 );
digitalWrite(LED_2, distance > 20 );
digitalWrite(LED_1, distance > 24 );
break;
};
case 5: //----------------------------------------------- Motoren vorwärts
{ LEDsoff(); delay(100);
if( TL )
{ digitalWrite(Motor_Links_VorwaertsRueckwaerts, HIGH);
ledcWrite(PWM_Links, 255);
}
else
{ ledcWrite(PWM_Links, 0);
};
// Übung 2, Ergänzen für den rechten Motor
if( TR )
{ digitalWrite(Motor_Rechts_VorwaertsRueckwaerts, HIGH);
ledcWrite(PWM_Rechts, 255);
}
else
{ ledcWrite(PWM_Rechts, 0);
};
break;
};
case 6: //----------------------------------------------- Motoren rückwärts
{ LEDsoff(); delay(100);
// Übung 3, case 5 ändern für Motoren rückwärts
if( TL )
{ digitalWrite(Motor_Links_VorwaertsRueckwaerts, LOW);
ledcWrite(PWM_Links, 255);
}
else
{ ledcWrite(PWM_Links, 0);
};
if( TR )
{ digitalWrite(Motor_Rechts_VorwaertsRueckwaerts, LOW);
ledcWrite(PWM_Rechts, 255);
}
else
{ ledcWrite(PWM_Rechts, 0);
};
break;
};
case 7: //----------------------------------------------- Motor Links vorwärts/rückwärts
{ LEDsoff(); delay(100);
// Übung 4, linker Motor vorwärts wenn Taste_Links gedrückt und rückwärts wenn Taste_Rechts gedrückt
if( TL )
{ digitalWrite(Motor_Links_VorwaertsRueckwaerts,HIGH);
ledcWrite(PWM_Links, 255);
break;
}
else
{ ledcWrite(PWM_Links, 0);
};
if( TR )
{ digitalWrite(Motor_Links_VorwaertsRueckwaerts,LOW);
ledcWrite(PWM_Links, 255);
break;
}
else
{ ledcWrite(PWM_Links, 0);
};
break;
};
case 8: //----------------------------------------------- Motor Rechts vorwärts/rückwärts
{ LEDsoff(); delay(100);
// Übung 5, rechter Motor vorwärts wenn Taste_Links gedrückt und rückwärts wenn Taste_Rechts gedrückt
if( TL )
{ digitalWrite(Motor_Rechts_VorwaertsRueckwaerts,HIGH);
ledcWrite(PWM_Rechts, 255);
break;
}
else
{ ledcWrite(PWM_Rechts, 0);
};
if( TR )
{ digitalWrite(Motor_Rechts_VorwaertsRueckwaerts,LOW);
ledcWrite(PWM_Rechts, 255);
break;
}
else
{ ledcWrite(PWM_Rechts, 0);
};
break;
};
case 9: //----------------------------------------------- Fahren, 2 Sekunden nach loslassen der Taste_Links fährt der CodeRacer 5 Sekunden vorwärts
{ LEDsoff(); delay(100);
if( TL )
{ while(!digitalRead(Taster_Links )) {}; // wait until button is released
// Übung 6, 2 Sekunden nach loslassen der Taste_Links soll der CodeRacer 5 Sekunden vorwärts fahren und dann wieder halten
delay(2000);
digitalWrite(Motor_Links_VorwaertsRueckwaerts, HIGH);
digitalWrite(Motor_Rechts_VorwaertsRueckwaerts,HIGH);
ledcWrite(PWM_Links, 100);
ledcWrite(PWM_Rechts, 100);
delay(3000);
ledcWrite(PWM_Links, 0);
ledcWrite(PWM_Rechts, 0);
}
break;
};
case 10: //----------------------------------------------- Variable Geschwindigkeit für beide Motoren und anzeigen des Zählers mit den LEDs
{ LEDsoff(); delay(100); // Start 2 Sekunden nach loslassen der Taste_Links
if( TL )
{ while(!digitalRead(Taster_Links )) {}; // wait until button is released
delay(2000);
digitalWrite(Motor_Links_VorwaertsRueckwaerts, HIGH);
digitalWrite(Motor_Rechts_VorwaertsRueckwaerts,HIGH);
for( speed = 80; speed <= 255; speed = speed + 4 )
{ delay(20);
ledcWrite(PWM_Links, speed);
ledcWrite(PWM_Rechts, speed);
Serial.println(speed);
digitalWrite(LED_1, bitRead(speed,8));
digitalWrite(LED_2, bitRead(speed,7));
digitalWrite(LED_3, bitRead(speed,6));
digitalWrite(LED_4, bitRead(speed,5));
digitalWrite(LED_5, bitRead(speed,4));
digitalWrite(LED_6, bitRead(speed,3));
};
delay(2000);
for( speed = 255; speed >= 80; speed = speed - 4 )
{ delay(20);
ledcWrite(PWM_Links, speed);
ledcWrite(PWM_Rechts, speed);
Serial.println(speed);
digitalWrite(LED_1, bitRead(speed,6));
digitalWrite(LED_2, bitRead(speed,5));
digitalWrite(LED_3, bitRead(speed,4));
digitalWrite(LED_4, bitRead(speed,3));
digitalWrite(LED_5, bitRead(speed,2));
digitalWrite(LED_6, bitRead(speed,1));
};
ledcWrite(PWM_Links, 0);
ledcWrite(PWM_Rechts, 0);
break;
};
};
case 11: //----------------------------------------------- circle left and right
{ LEDsoff(); delay(100); // Start 2 Sekunden nach loslassen der linken oder rechten Taste
if( TL )
{ while(!digitalRead(Taster_Links )) {}; // wait until button is released
delay(2000);
DreheLinks(16); // 65 ganze Drehung
};
if( TR )
{ while(!digitalRead(Taster_Rechts )) {}; // wait until button is released
delay(2000);
DreheRechts(16); // 65 ganze Drehung
};
break;
};
/*case 0: //----------------------------------------------- Fahre Qudrat
{ //delay(100);
if( TL )
{ while(!digitalRead(Taster_Links )) {}; // wait until button is released
delay(2000);
for( i = 0; i < 4; i = i + 1 )
{//1. Strecke
StartL = StL;
StartR = StR;
MotorLinks(Vorwaerts, 70);
MotorRechts(Vorwaerts, 80);
while ( (StL-StartL)<50 && (StR-StartR)<50 ) {};
//MotorLinks(Vorwaerts, 0);
//MotorRechts(Vorwaerts, 0);
//1. Kurve
StartL = StL;
StartR = StR;
MotorLinks(Vorwaerts, 70);
MotorRechts(Vorwaerts, 0);
while ( (StL-StartL)<17 ) {};
MotorLinks(Vorwaerts, 0);
MotorRechts(Vorwaerts, 0);
};
};
break;
};*/
case 1: //----------------------------------------------- Geregelte Geradeausfahrt
{ if( TL ) // CodeRacer starten
{ delay(1000);
MotorLinks(Vorwaerts, 80);
MotorRechts(Vorwaerts, 80);
timeLPrev = micros();
timeRPrev = micros();
countL = 0;
countR = 0;
speedSet = 30000; speedSetL = 20000; speedSetR = 20000;
};
if( TR ) // CodeRacer stoppen
{ MotorLinks(Vorwaerts, 0);
MotorRechts(Vorwaerts, 0);
speedSet = 0;
};
if(diffL > 25000)
{ g = 2; minspeed=60; maxspeed=150;
digitalWrite(LED_3,HIGH);
digitalWrite(LED_4,LOW);
digitalWrite(LED_5,LOW);
if( (isrLFlag == true) || (isrRFlag == true) )
{ if( countL > countR )
{ speedL=speedL-g;
speedR=speedR+g;
};
if( countR > countL )
{ speedL=speedL+g;
speedR=speedR-g;
};
speedL++;
speedR++;
//Serial.print("links : "); Serial.print(countL); Serial.print(" : "); Serial.print(diffL); Serial.print(" : "); Serial.println(speedL);
//Serial.print("rechts: "); Serial.print(countR); Serial.print(" : "); Serial.print(diffR); Serial.print(" : "); Serial.println(speedR);
if( speedL > maxspeed ) {speedL = maxspeed;};
if( speedL < minspeed ) {speedL = minspeed;};
if( speedR > maxspeed ) {speedR = maxspeed;};
if( speedR < minspeed ) {speedR = minspeed;};
MotorLinks(Vorwaerts, speedL);
MotorRechts(Vorwaerts, speedR);
isrLFlag = false;
isrRFlag = false;
};
}
else
{ g=1; minspeed=60; maxspeed=255;
digitalWrite(LED_3,LOW);
digitalWrite(LED_4,HIGH);
digitalWrite(LED_5,HIGH);
if( isrLFlag == true )
{ if( diffL > speedSetL ) {speedL=speedL+g;};
if( diffL < speedSetL ) {speedL=speedL-g;};
if( speedL > maxspeed ) {speedL = maxspeed;};
if( speedL < minspeed ) {speedL = minspeed;};
//Serial.print("links : "); Serial.print(countL); Serial.print(" : "); Serial.print(diffL); Serial.print(" : "); Serial.println(speedL);
MotorLinks(Vorwaerts, speedL);
isrLFlag = false;
};
if( isrRFlag == true )
{ if( diffR > speedSetR ) {speedR=speedR+g;};
if( diffR < speedSetR ) {speedR=speedR-g;};
if( speedR > maxspeed ) {speedR = maxspeed;};
if( speedR < minspeed ) {speedR = minspeed;};
//Serial.print("rechts: "); Serial.print(countR); Serial.print(" : "); Serial.print(diffR); Serial.print(" : "); Serial.println(speedR);
MotorRechts(Vorwaerts, speedR);
isrRFlag = false;
};
};
};
/* case 0: //----------------------------------------------- Starten der Geradeausfahrt
{ if( TL ) // CodeRacer starten
{ delay(1000);
speedL=70; // Startgeschwindigkeit
speedR=70;
MotorLinks(Vorwaerts, speedL);
MotorRechts(Vorwaerts, speedR);
timeLPrev = micros();
timeRPrev = micros();
countL = 0;
countR = 0;
};
if( TR ) // CodeRacer stoppen
{ speedL=0;
speedR=0;
MotorLinks(Vorwaerts, speedL);
MotorRechts(Vorwaerts, speedR);
speedSet = 0;
};
g = 3; minspeed=60; maxspeed=90;
if( (isrLFlag == true) || (isrRFlag == true) )
{ if( countL > countR )
{ speedL=speedL-g;
speedR=speedR+g;
};
if( countR > countL )
{ speedL=speedL+g;
speedR=speedR-g;
};
//Serial.print("links : "); Serial.print(countL); Serial.print(" : "); Serial.print(diffL); Serial.print(" : "); Serial.println(speedL);
//Serial.print("rechts: "); Serial.print(countR); Serial.print(" : "); Serial.print(diffR); Serial.print(" : "); Serial.println(speedR);
if( speedL > maxspeed ) {speedL = maxspeed;};
if( speedL < minspeed ) {speedL = minspeed;};
if( speedR > maxspeed ) {speedR = maxspeed;};
if( speedR < minspeed ) {speedR = minspeed;};
MotorLinks(Vorwaerts, speedL);
MotorRechts(Vorwaerts, speedR);
isrLFlag = false;
isrRFlag = false;
};
break;
};*/
/* case 13: //----------------------------------------------- circle left/right
{ delay(1000);
digitalWrite(Motor_Links_VorwaertsRueckwaerts,HIGH);
for( speed = 0; speed <= 255; speed = speed + 1)
{ delay(100);
ledcWrite(PWM_Links, speed);
digitalWrite(LED_1, bitRead(speed,7));
digitalWrite(LED_2, bitRead(speed,6));
digitalWrite(LED_3, bitRead(speed,5));
digitalWrite(LED_4, bitRead(speed,4));
digitalWrite(LED_5, bitRead(speed,3));
digitalWrite(LED_6, bitRead(speed,2));
};
delay(5000);
for( speed = 255; speed > 0; speed = speed - 1)
{ delay(100);
ledcWrite(PWM_Links, speed);
digitalWrite(LED_1, bitRead(speed,7));
digitalWrite(LED_2, bitRead(speed,6));
digitalWrite(LED_3, bitRead(speed,5));
digitalWrite(LED_4, bitRead(speed,4));
digitalWrite(LED_5, bitRead(speed,3));
digitalWrite(LED_6, bitRead(speed,2));
};
//ledcWrite(PWM_Links, 0);
break;
};
case 14: //----------------------------------------------- drive straigt ahead
{ delay(1000);
digitalWrite(Motor_Links_VorwaertsRueckwaerts,HIGH);
for( speed = 0; speed <= 255; speed = speed + 1)
{ delay(100);
ledcWrite(PWM_Links, speed);
digitalWrite(LED_1, bitRead(speed,7));
digitalWrite(LED_2, bitRead(speed,6));
digitalWrite(LED_3, bitRead(speed,5));
digitalWrite(LED_4, bitRead(speed,4));
digitalWrite(LED_5, bitRead(speed,3));
digitalWrite(LED_6, bitRead(speed,2));
};
delay(5000);
for( speed = 255; speed > 0; speed = speed - 1)
{ delay(100);
ledcWrite(PWM_Links, speed);
digitalWrite(LED_1, bitRead(speed,7));
digitalWrite(LED_2, bitRead(speed,6));
digitalWrite(LED_3, bitRead(speed,5));
digitalWrite(LED_4, bitRead(speed,4));
digitalWrite(LED_5, bitRead(speed,3));
digitalWrite(LED_6, bitRead(speed,2));
};
//ledcWrite(PWM_Links, 0);
break;
};*/
/*case 15: //----------------------------------------------- Serial read
{ while( HIGH ) {};
break;
};*/
};
};
}

View File

@ -1,44 +1,46 @@
#include <ESP32Servo.h>
#define SERVOPIN 16 // Pin an dem der Servomotor angeschlossen ist. 'GPIO' muss man weglassen -> also nicht GPIO88 sondern nur 88.
#define SERVO_45GRAD_LINKS 136 // Wert um den Servo 45 Grad nach links zu drehen ... der kann je nach Servo anders sein
#define SERVO_45GRAD_RECHTS 45 // Wert um den Servo 45 Grad nach rechtss zu drehen ... der kann je nach Servo anders sein
#define SERVO_0GRAD_MITTE 90 // Wert um den Servo in die Mitte zu drehen ... der kann je nach Servo anders sein
#define SERVO_LINKS 136 // Wert um den Servo 45 Grad nach links zu drehen ... der kann je nach Servo anders sein
#define SERVO_RECHTS 45 // Wert um den Servo 45 Grad nach rechtss zu drehen ... der kann je nach Servo anders sein
#define SERVO_MITTE 90 // Wert um den Servo in die Mitte zu drehen ... der kann je nach Servo anders sein
Servo myservo; // ein Servo-Objekt anlegen, um den Servo Motor steuern zu können
Servo myservo[8]; // ein Servo-Objekt anlegen, um den Servo Motor steuern zu können
// 0 1 2 3 4 5 6 7
const unsigned int myservo_pin[] = {21, 32, 12, 13, 22, 19, 16, 23 };
void setup() {
Serial.begin(115200); // Serial Monitor aktivieren. Mit dem Monitor kann man sich Werte und Meldungen anzeigen lassen.
myservo.attach(SERVOPIN); // dem Servo Objekt "sagen" an welchen Pin am Schaltkreis der Server angeschlossen ist
for(unsigned int serv=0;serv<=7;serv++)
{
myservo[serv].attach(myservo_pin[serv]); // dem Servo Objekt "sagen" an welchen Pin am Schaltkreis der Server angeschlossen ist
delay(200);
myservo[serv].write(SERVO_MITTE);
delay(500);
}
}
void loop() {
ServoMitte();
ServoRechts();
ServoMitte();
ServoLinks();
for(unsigned int serv = 0; serv <= 7; serv++)
{
setServo(serv, SERVO_LINKS);
setServo(serv, SERVO_RECHTS);
setServo(serv, SERVO_MITTE);
Serial.println(".");
Serial.println("---------------------------------------------------");
delay(2000);
}
}
//-------------- Funktionen und Prozeduren -------------------------
void ServoRechts(void){
Serial.println("SERVO_RECHTS"); // Meldung am Monitor ausgeben
myservo.write(SERVO_45GRAD_RECHTS); // Servo auf den Winkel rechts drehen
delay(1000); // Kurz warten, dass der Servo die Stellung erreicht
}
void ServoLinks(void){
Serial.println("SERVO_LINKS"); // Meldung am Monitor ausgeben
myservo.write(SERVO_45GRAD_LINKS); // Servo auf den Winkel links drehen
delay(1000); // Kurz warten, dass der Servo die Stellung erreicht
}
void ServoMitte(void){
Serial.println("SERVO_MITTE"); // Meldung am Monitor ausgeben
myservo.write(SERVO_0GRAD_MITTE); // Servo auf den Winkel links drehen
delay(1000); // Kurz warten, dass der Servo die Stellung erreicht
void setServo(unsigned int serv, unsigned int angel)
{
Serial.print("Servo ");
Serial.print(serv);
Serial.print(" set to ");
Serial.print(angel);
myservo[serv].write(angel);
delay(1000);
}

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,10 @@
Betref: Sonderkonditionen für MakerLab
Sehr geehrte Damen und Herren,
in kürze startet bei uns im MakerLab Murnau e.V. wieder ein CodeRacer Kurs für Kinder und Jugendliche. Innerhalb des Kurses bauen und Programmiern die Kids ein autonomes Fahrzeug.
Siehe Bild aus dem letzen Kurs.
<Bild>
Dafür wollen wir bei Ihnen einige Bauteile bestellen und meine Frage ist, ob Sie uns Sonderkonditionen für das MakerLab Murnau einräumen?
Viele Grüße
Ralf Kraume
S++

Binary file not shown.

After

Width:  |  Height:  |  Size: 394 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,30 +1,30 @@
![Build Status](https://git.itsblue.de/Fenoglio/coderacer/badges/master/build.svg)
![Flyer](/Doku/Bilder/coderace_get_in_contact_pic.png)
## Repo Overview
This is fun in progress and for sure not covering all questions and topics.
Hopefully you will get an idea of what that project means and is able to do.
Have fun and let us know what you think.
Repo dir | Description
---------|--------------
Arduino/libraries | arduino stuff and libraries
Doku | HowTo as well as doxygen documentation. To view doxygen documentation repository has to be downloaded (no rendering through gitlab)
Install | Everything to get your dev IDE running on your PC
AppInventor | Module to load into AppInventor or directly to your phone.
Fritzing | Schematics and stuff
Bilder | Pictures of racers and events;-)
## Full API Docs
A full API Documentation is available [here](https://fenoglio.pages.itsblue.de/coderacer/)
## How to start
* Start reading the [{code}racer HowTo](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf)
* Learn about the [{code}racer API](https://fenoglio.pages.itsblue.de/coderacer/)
* Download the {code}racer Repo and install the IDE on your PC (see [CodeRacer HowTo Page.8](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf))
* Installation of used libraries (see [{code}racer HowTo Page.10](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf))
* Compile example (esp32_coderacer_beispiel) (see [{code}racer HowTo Page.11](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf))
* Work on your OWN CodeRacer Algo
## Feedback/Questions
* Please write your questions/feedback to development@itsblue.de
![Build Status](https://git.itsblue.de/Fenoglio/coderacer/badges/master/build.svg)
![Flyer](/Doku/Bilder/coderace_get_in_contact_pic.png)
## Repo Overview
This is fun in progress and for sure not covering all questions and topics.
Hopefully you will get an idea of what that project means and is able to do.
Have fun and let us know what you think.
Repo dir | Description
---------|--------------
Arduino/libraries | arduino stuff and libraries
Doku | HowTo as well as doxygen documentation. To view doxygen documentation repository has to be downloaded (no rendering through gitlab)
Install | Everything to get your dev IDE running on your PC
AppInventor | Module to load into AppInventor or directly to your phone.
Fritzing | Schematics and stuff
Bilder | Pictures of racers and events;-)
## Full API Docs
A full API Documentation is available [here](https://fenoglio.pages.itsblue.de/coderacer/)
## How to start
* Start reading the [{code}racer HowTo](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf)
* Learn about the [{code}racer API](https://fenoglio.pages.itsblue.de/coderacer/)
* Download the {code}racer Repo and install the IDE on your PC (see [CodeRacer HowTo Page.8](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf))
* Installation of used libraries (see [{code}racer HowTo Page.10](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf))
* Compile example (esp32_coderacer_beispiel) (see [{code}racer HowTo Page.11](https://git.itsblue.de/Fenoglio/coderacer/tree/master/Doku/coderacer_handbuch.pdf))
* Work on your OWN CodeRacer Algo
## Feedback/Questions
* Please write your questions/feedback to development@itsblue.de

5
vsode/esp32_coderacer/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

View File

@ -0,0 +1,67 @@
# Continuous Integration (CI) is the practice, in software
# engineering, of merging all developer working copies with a shared mainline
# several times a day < https://docs.platformio.org/page/ci/index.html >
#
# Documentation:
#
# * Travis CI Embedded Builds with PlatformIO
# < https://docs.travis-ci.com/user/integration/platformio/ >
#
# * PlatformIO integration with Travis CI
# < https://docs.platformio.org/page/ci/travis.html >
#
# * User Guide for `platformio ci` command
# < https://docs.platformio.org/page/userguide/cmd_ci.html >
#
#
# Please choose one of the following templates (proposed below) and uncomment
# it (remove "# " before each line) or use own configuration according to the
# Travis CI documentation (see above).
#
#
# Template #1: General project. Test it using existing `platformio.ini`.
#
# language: python
# python:
# - "2.7"
#
# sudo: false
# cache:
# directories:
# - "~/.platformio"
#
# install:
# - pip install -U platformio
# - platformio update
#
# script:
# - platformio run
#
# Template #2: The project is intended to be used as a library with examples.
#
# language: python
# python:
# - "2.7"
#
# sudo: false
# cache:
# directories:
# - "~/.platformio"
#
# env:
# - PLATFORMIO_CI_SRC=path/to/test/file.c
# - PLATFORMIO_CI_SRC=examples/file.ino
# - PLATFORMIO_CI_SRC=path/to/test/directory
#
# install:
# - pip install -U platformio
# - platformio update
#
# script:
# - platformio ci --lib="." --board=ID_1 --board=ID_2 --board=ID_N

View File

@ -0,0 +1,7 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
]
}

View File

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,282 @@
#include "Arduino.h"
#include <algorithm> // std::swap
#include <ESP32Servo.h> // Servo drive support for ESP32
#include "esp32-hal-ledc.h" // Part of ESP32 board files - Analog output
#include "BluetoothSerial.h" // Bluetooth enablement - part of ESP or standart Arduino lib
#include <vector> // support for vectors
#include <string>
#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it
#endif
#ifndef __CodeRacer_H__
#define __CodeRacer_H__
//----- Fun stuff ---------
#define FUN_MIN_PAUSE_MS 120000 // minimum and maximum pause between to rounds fun
#define FUN_MAX_PAUSE_MS 300000
#define LED_SWITCH_MS 50 // speed of knight rider lights
//----- Button ------------
#define H_BUTTON_PIN 17
#define BUTTON_BOUNCING_TIME_MS 200 // bouncing delay
//----- Servo -----
#define H_SERVO_PIN 16
#define H_SERVO_LEFT_POS 145 // left position of the servo
#define H_SERVO_CENTER_LEFT 100 // left-center position of the servo
#define H_SERVO_RIGHT_POS 35 // right position of the servo
#define H_SERVO_CENTER_RIGHT 80 // right-center position of the servo
#define H_SERVO_CENTER_POS 90 // center position of the servo
#define H_SERVO_SWEEP_LEFT_POS 140 // most left sweep position of the servo
#define H_SERVO_SWEEP_RIGHT_POS 40 // most right sweep position of the servo
#define SERVO_SWEEP_TO_LEFT_STEP 5 // sweep step to the left
#define SERVO_SWEEP_TO_RIGHT_STEP -5 // sweep step to the right
#define SERVO_SWEEP_MS 10 // duration of time betwee to sweep steps
#define SERVO_MAX_POSITION 170 // maximum servo position
#define SERVO_MIN_POSITION 10 // minimum servo position
#define SERVO_SET_1TICK_POSITION_DELAY_MS 3 // minimum duration of time between two servo steps
//----- Ultrasonic sensor -----
#define H_US_TRIG_PIN 12
#define H_US_ECHO_PIN 14
#define H_US_STOP_DISTANCE_CM 25 // if the measured distance is smaller the racer maybe stopped
#define US_MAX_ECHO_TIME_US 6000 // timeout for ultrasonic sensor measurements - this is about 100cm
//----- Drives -----
#define H_DRIVE_RIGHT_SPEED 255 // default speed of right side drive. 0 ...255
#define H_DRIVE_LEFT_SPEED 255 // default speed of left side drive. 0 ...255
#define H_DRIVE_RIGHT_ENABLE_PIN 2
#define H_DRIVE_RIGHT_FWRD_PIN 4
#define H_DRIVE_RIGHT_BACK_PIN 15
#define H_DRIVE_LEFT_ENABLE_PIN 21
#define H_DRIVE_LEFT_FWRD_PIN 22
#define H_DRIVE_LEFT_BACK_PIN 23
#define H_RACER_TURN_LEFT_FOR_MS 400 // duration of time the racer will turn to left
#define H_RACER_TURN_RIGHT_FOR_MS 400 // duration of time the racer will turn to right
#define DRIVE_PWM_LEFT_CHANNEL 5 // PWM-channel for left side drive
#define DRIVE_PWM_RIGHT_CHANNEL 6 // PWM-channel for right side drive
//----- LEDs -----
#define H_LED_FRWD_PIN 26
#define H_LED_STOP_PIN 25
#define H_LED_LEFT_PIN 33
#define H_LED_RIGHT_PIN 27
using namespace std;
static volatile bool coderracer_activ = false;;
static volatile unsigned long button_last_pressed_at_ms = millis();
enum ledstate {
LEDOFF,
LEDON
};
enum drivestate {
DRIVESTOP,
DRIVEFRWD,
DRIVEBACK
};
//--- this is as preparation of the class creation
class CodeRacer {
private:
//bluetooth
std::vector<String> _bt_ignoremsgs;
std::vector<String> _bt_onlymsgs;
bool _bluetoothcreated;
unsigned long _bt_stopOnLostConnection_timeout_ms;
unsigned long _bt_lastmessagereceived;
BluetoothSerial* _BTSerial;
//pins
uint8_t _button_pin;
uint8_t _servo_pin;
uint8_t _us_trigger_pin;
uint8_t _us_echo_pin;
uint8_t _drive_left_frwd_pin;
uint8_t _drive_left_back_pin;
uint8_t _drive_left_enable_pin;
uint8_t _drive_right_frwd_pin;
uint8_t _drive_right_back_pin;
uint8_t _drive_right_enable_pin;
uint8_t _led_frwd_pin;
uint8_t _led_stop_pin;
uint8_t _led_left_pin;
uint8_t _led_right_pin;
//servo variables
int8_t _servo_sweep_step;
uint8_t _servo_position;
unsigned long _servo_position_set_at_ms;
unsigned long _servo_position_eta_in_ms;
//drives variables
uint8_t _drive_left_speed;
uint8_t _drive_right_speed;
unsigned long _turn_left_for_ms;
unsigned long _turn_right_for_ms;
// ultrasonic variables
bool _coderacer_stopped_at_min_distance;
bool _coderacer_stop_at_distance_enabled;
unsigned long _usonic_stop_distance_cm;
unsigned long _usonic_stop_distance_us;
unsigned long _usonic_distance_us;
unsigned long _usonic_distance_cm;
//fun stuff variables
unsigned long _last_led_switched_at_ms;
uint8_t _led_count;
uint8_t _last_led_on;
unsigned long _servo_look_around_at_ms;
unsigned long _min_distance_cm;
bool _drive;
unsigned long _drive_set_at_ms;
bool _servo_sweep;
bool _coderracer_activ;
//objects
Servo* _servo;
Servo* _servo_dummy;
static void _set_button_state();
void _analog_write(uint8_t pin, uint8_t speed);
unsigned long _servo_set_position(uint8_t position);
public:
//properties
bool coderacer_fun_enabled;
uint8_t servo_center_pos; /**< The position the servo is looking straight forward. Default is 90 . Allowed are values 10<=pos<=170 */
uint8_t servo_left_pos; /**< The position the servo is looking to the left. Default is 170 . Allowed are values 10<=pos<=170 */
uint8_t servo_right_pos; /**< The position the servo is looking to the right. Default is 0 . Allowed are values 10<=pos<=170 */
uint8_t servo_sweep_left_pos; /**< When the servo is sweeping this is the left most position */
uint8_t servo_sweep_right_pos; /**< When the servo is sweeping this is the right most position */
//methods
CodeRacer();
CodeRacer(uint8_t button_pin, uint8_t servo_pin,
uint8_t us_trigger_pin, uint8_t us_echo_pin,
uint8_t drive_left_frwd_pin, uint8_t drive_left_back_pin, uint8_t drive_left_enable_pin,
uint8_t drive_right_frwd_pin, uint8_t drive_right_back_pin, uint8_t drive_right_enable_pin,
uint8_t led_frwd_pin, uint8_t led_stop_pin, uint8_t led_left_pin, uint8_t led_right_pin);
void set_inactive();
void set_active();
void begin();
// getters
bool is_active();
bool is_driving();
bool stopped_at_min_distance();
unsigned long usonic_distance_cm();
unsigned long usonic_distance_us();
uint8_t servo_position();
unsigned long servo_position_set_at_ms();
unsigned long servo_position_eta_in_ms();
uint8_t drive_left_speed();
uint8_t drive_right_speed();
unsigned long turn_left_for_ms();
unsigned long turn_right_for_ms();
// higher level {code}racer services
void stop_driving();
void drive_forward();
void drive_forward(uint8_t left_speed, uint8_t right_speed);
void drive_backward();
void drive_backward(uint8_t left_speed, uint8_t right_speed);
void turn_left();
void turn_left(unsigned long turn_for_ms);
void turn_left(unsigned long turn_for_ms, uint8_t left_speed, uint8_t right_speed);
void turn_right();
void turn_right(unsigned long turn_for_ms);
void turn_right(unsigned long turn_for_ms, uint8_t left_speed, uint8_t right_speed);
void start_stop_at_min_distance();
void start_stop_at_min_distance(unsigned long min_distance_cm);
void stop_stop_at_min_distance();
// Bluetooth
void bt_enable_stopOnLostConnection();
void bt_enable_stopOnLostConnection(unsigned long timeout);
void bt_disable_stopOnLostConnection();
void bt_start(String name);
String bt_getString();
String bt_getString(uint8_t delimiterbyte);
bool bt_msgavailable();
void bt_addStringToIgnoreList(String stringtoignore);
void bt_clearIgnoreList();
void bt_removeStringFromIgnoreList(String stringtoignore);
// LEDs
void set_leds_left_stop_frwd_right(ledstate leftled, ledstate stopled, ledstate frwdled, ledstate rightled);
void set_leds_all(ledstate alleds);
void set_leds_all_off();
void set_leds_all_on();
// Drives
void drives_settings(uint8_t drive_left_speed, uint8_t drive_right_speed, unsigned long turn_left_ms, unsigned long turn_right_ms);
void set_drives_states_left_right(drivestate stateleft, drivestate stateright);
void set_drive_left_state(drivestate state);
void set_drive_right_state(drivestate state);
void set_drive_state(drivestate state, uint8_t frwdpin, uint8_t backpin);
void set_drives_speed_left_right(uint8_t speedleft, uint8_t speedright);
void set_drive_left_speed(uint8_t speed);
void set_drive_right_speed(uint8_t speed);
void set_drive_speed(uint8_t speed, uint8_t enablepin);
void set_drives_stop_left_right();
// Ultrasonic sensor
unsigned long usonic_measure_cm();
unsigned long usonic_measure_us();
unsigned long usonic_measure_cm(unsigned long max_echo_run_time_us);
unsigned long usonic_measure_us(unsigned long max_echo_run_time_us);
unsigned long usonic_measure_single_shot_cm();
unsigned long usonic_measure_single_shot_us();
unsigned long usonic_measure_single_shot_cm(unsigned long max_echo_run_time_us);
unsigned long usonic_measure_single_shot_us(unsigned long max_echo_run_time_us);
void usonic_set_stop_distance_cm(unsigned long stop_distance_cm);
void usonic_set_stop_distance_us(unsigned long stop_distance_us);
// Servo drive
void servo_settings(uint8_t pos_center, uint8_t pos_left, uint8_t pos_right, uint8_t sweep_left_pos, uint8_t sweep_right_pos);
uint8_t servo_set_position_wait(uint8_t position);
unsigned long servo_set_position(uint8_t position);
void servo_set_to_right();
void servo_set_to_left();
void servo_set_to_center();
void servo_sweep();
// just for fun
void kitt();
void look_around();
// previous OBSOLETE german language definitions of the methods - still needed to support MakerLab Murnau {code}racer project
// - but use the english ones for new implementations
void servo_einstellungen(uint8_t winkel_mitte, uint8_t winkel_links, uint8_t winkel_rechts, uint8_t schwenk_links, uint8_t schwenk_rechts);
void motor_einstellungen(uint8_t motor_links_tempo, uint8_t motor_rechts_tempo, unsigned long drehung_links_ms, unsigned long drehung_rechts_ms);
void anhalten();
void vorwaerts();
void rueckwaerts();
void links();
void rechts();
void servo_rechts();
void servo_links();
void servo_mitte();
unsigned long abstand_messen();
void servo_schwenk();
bool start_stop();
};
#endif

View File

@ -0,0 +1,56 @@
// Full API description of the coderacer.h can be found here: https://fenoglio.pages.itsblue.de/coderacer/
// Repository with all needed data and users guide is here: https://git.itsblue.de/Fenoglio/coderacer/tree/master
// An example for a application to control the coderacer via bluetooth can be found here: https://git.itsblue.de/Fenoglio/coderacer/tree/master/AppInventor/SimpleBTCoderacer
// - this app was developed with MIT App Inventor and can be uploaded to your account to rework it.
#include <CodeRacer.h>
CodeRacer coderacer;
String recvddata = ""; //Variable in der der Bluetooth Befehl gespeichert wird
void setup() {
Serial.begin(115200);
coderacer.begin();
coderacer.bt_start("CodeRacer"); //Bluetooth für den Coderacer anschalten
coderacer.bt_enable_stopOnLostConnection(); //Coderacer anhalten, wenn 1 Sekunde nichts per Bluetooth empfangen wurde
coderacer.bt_addStringToIgnoreList("."); //das "." Zeichen wird beim empfangen ignoriert
}
void loop() {
// Prüfen ob Bluetooth Nachrichten angekommen sind und die gleich abholen ...
recvddata = coderacer.bt_getString(); //die Nachtricht merken (sie steht jetzt in recvdata und kann später benutzt werden)
if (recvddata != "") //wenn eine Nachricht empfangen wurde, in der was drin steht ...
{
Serial.println(recvddata);
if(recvddata == "stop")
{
coderacer.stop_driving();
}
if(recvddata == "vor")
{
coderacer.drive_forward(255,255);
}
if(recvddata.startsWith("rueck"))
{
coderacer.drive_backward(255,255);
}
if(recvddata.startsWith("links"))
{
coderacer.turn_left();
}
if(recvddata.startsWith("rechts"))
{
coderacer.turn_right();
}
}
delay(20);
}

View File

@ -0,0 +1,82 @@
#include <CodeRacer.h>
//----- settings for the ultrasonic sensor -----
#define US_STOP_ABSTAND_CM 20 // if distance goes below that - stop the racer
//----- variables we need
unsigned long distance_cm = 0;
//---- construct the coderacer object
CodeRacer coderacer;
//---- set up code - executed ones
void setup() {
// start serial monitor
Serial.begin(115200);
// initialize the coderacer
coderacer.begin();
// enable fun stuff
coderacer.coderacer_fun_enabled = true;
// look to the left, to the right and to center... :-)
coderacer.servo_set_to_left();
delay(100);
coderacer.servo_set_to_right();
delay(100);
coderacer.servo_set_to_center();
delay(100);
}
//---- 'endless' loop
void loop() {
// check if the racer was started (button was toggled to coderacer active state
if(true == coderacer.start_stop()){
Serial.print("Speed of right side drive: ");
Serial.println(coderacer.drive_right_speed());
Serial.print("Speed of left side drive: ");
Serial.println(coderacer.drive_left_speed());
// measure the distance - at the position of the servo
distance_cm = coderacer.usonic_measure_cm();
coderacer.start_stop_at_min_distance(US_STOP_ABSTAND_CM);
while(!coderacer.stopped_at_min_distance()){
Serial.print("Distanc in cm: ");
Serial.println(distance_cm);
if(distance_cm > 50){
coderacer.drive_forward();
coderacer.servo_sweep();
}
else if(distance_cm > 40){
coderacer.turn_right();
}
else if(distance_cm > 30){
coderacer.turn_left();
}
else {
coderacer.drive_backward();
}
// measure the distance - at the position of the servo
distance_cm = coderacer.usonic_measure_cm();
}
Serial.println("***** STOPPED ***** ");
Serial.print("Measured stop distanc of cm: ");
Serial.println(distance_cm);
Serial.print("Measured at servo position of: ");
Serial.println(coderacer.servo_position());
coderacer.set_inactive();
}
}

View File

@ -0,0 +1,15 @@
CodeRacer KEYWORD1
begin KEYWORD2
servo_einstellungen KEYWORD2
motor_einstellungen KEYWORD2
anhalten KEYWORD2
normal_tempo KEYWORD2
vorwaerts KEYWORD2
links KEYWORD2
rechts KEYWORD2
servo_rechts KEYWORD2
servo_links KEYWORD2
servo_mitte KEYWORD2
abstand_messen KEYWORD2
servo_schwenk KEYWORD2
start_stop KEYWORD2

View File

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

View File

@ -0,0 +1,15 @@
;PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino

View File

@ -0,0 +1,128 @@
#include "CodeRacer.h"
#include <ESP32Servo.h>
#include "esp32-hal-ledc.h"
//----- Werte für den Ultraschallsensor -----
#define US_STOP_ABSTAND_CM 20 // Wenn der gemessene Abstand kleiner ist, hält der CodeRacer an
#define US_MIN_ABSTAND_LI_RE 8 // Wenn der Unterschied zwischen linkem und und rechtem Abstand kleiner ist, dann drehe in dieselbe Richtugn wie vorher weiter
#define MAX_ANZAHL_DREHUNGEN 10 // Wenn der Coderacer sich schon so oft gedreht hat ohne eine Stelle zu finden, wo es Platz gibt - fahren wir mal ein Stück rückwärts ...
//----- Variablen, die wir brauchen um uns Werte zu merken ----
long abstand_vorn_cm, abstand_links_cm, abstand_rechts_cm;
enum drehrichtung {links=0, rechts};
drehrichtung drehung = links;
unsigned int anzahl_drehung = 0;
CodeRacer coderacer;
//---- Hier startet der Code zum Einstellen aller wichtigen Dinge. Setup() wird einmal ausgeführt. ----
void setup() {
// Monitor
Serial.begin(115200); // Serial Monitor aktivieren. Mit dem Monitor kann man sich Werte und Meldungen anzeigen lassen.
// CodeRacer initialisieren
coderacer.begin();
coderacer.servo_links();
delay(10);
coderacer.servo_rechts();
delay(10);
coderacer.servo_mitte();
anzahl_drehung = 0;
drehung = links;
}
//---- Hier startet unsere endlose Schleife - die immer wieder von vorn angefangen wird, wenn wir am Ende angekommen sind. Da ist unser "Fahr"Code drin, der den CodeRacer steuert
void loop() {
// Abstand messen -> nach vorn ... um zu sehen, ob was passiert messen wir immer ... auch wenn der Racer nicht fahren soll
abstand_vorn_cm = coderacer.abstand_messen();
// Abfragen ob der Racer fahren soll oder nicht ...
if(true == coderacer.start_stop()){
// Abstandssensor schon verstellen ... dann hat er das bis zur nächsten Messung auch geschafft
coderacer.servo_schwenk();
// Ist die Bahn frei?
if(abstand_vorn_cm < US_STOP_ABSTAND_CM){
// Nein! Der Abstand nach vorn ist kleiner als erlaubt!
// Racer anhalten
coderacer.anhalten();
// Nach links schauen!
coderacer.servo_links();
// Abstand messen und merken.
abstand_links_cm = coderacer.abstand_messen();
// Nach rechts schauen!
coderacer.servo_rechts();
// Abstand messen und merken.
abstand_rechts_cm = coderacer.abstand_messen();
// Ist der Abstand links oder rechts groß genug genug?
// Wenn nicht - wenn der Racer sich bisher noch nicht gedreht hat - fahre ein Stück rückwarts. Wenn der Racer sich gerade schon gedreht hat, drehe in dieselbe Richtung wie vorher.
if((abstand_links_cm < US_MIN_ABSTAND_LI_RE) && (abstand_rechts_cm < US_MIN_ABSTAND_LI_RE)){
if(anzahl_drehung == 0){
coderacer.rueckwaerts();
delay(300);
coderacer.anhalten();
//noch mal Abstand messen ...
coderacer.servo_links();
// Abstand messen und merken.
abstand_links_cm = coderacer.abstand_messen();
// Nach rechts schauen!
coderacer.servo_rechts();
// Abstand messen und merken.
abstand_rechts_cm = coderacer.abstand_messen();
}
if( anzahl_drehung > MAX_ANZAHL_DREHUNGEN ){
anzahl_drehung = 0;
} else {
anzahl_drehung ++;
}
}
// wenn der Racer sich noch nicht gedreht hat (anzahl_drehung == 0) - oder gerade rückwärts gefahren ist (anzahl_drehung == 1) drehe jetzt dahin wo mehr Platz ist;
if(anzahl_drehung <= 1){
// Welcher Abstand ist größer?
if(abstand_links_cm > abstand_rechts_cm){
// Links ist mehr Platz!
drehung = links;
}
else{
// Rechts ist mehr Platz!
drehung = rechts;
}
}
switch(drehung){
case links:
coderacer.links();
coderacer.servo_mitte();
break;
case rechts:
coderacer.links();
coderacer.servo_mitte();
break;
}
}
else{
// Ja! Die Bahn ist frei
// Wenn die Bahn richtig frei ist, dann können wir den Zähler fürs drehen auf 0 setzen ...
if( abstand_vorn_cm > (US_STOP_ABSTAND_CM + US_MIN_ABSTAND_LI_RE)){
anzahl_drehung = 0;
}
coderacer.vorwaerts();
}
} else {
anzahl_drehung = 0;
}
}

View File

@ -0,0 +1,11 @@
This directory is intended for PIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html