last changes

This commit is contained in:
Fenoglio 2018-09-12 16:35:48 +02:00
parent 75be491f28
commit 8b9fcc31c2
4 changed files with 349 additions and 234 deletions

Binary file not shown.

BIN
server_client.pptx Normal file

Binary file not shown.

View file

@ -9,6 +9,7 @@
#define STATION_SEL1 10 // this 10 for Nano
typedef enum {BASESTATION = 0, TOPSTATION} radio_type_e;
#define RF24_IRQ 2 // this is 2 for the Nano, ?? for the ESP
#define RF24_CNS 7 // this is 7 for the Nano, D4 for the ESP
#define RF24_CE 8 // this is 8 for the Nano, D3 for the ESP
#define RF24_PA_LEVEL RF24_PA_LOW // sending power level RF24_PA_LOW, RF24_PA_HIGH????
@ -20,83 +21,85 @@ typedef enum {BASESTATION = 0, TOPSTATION} radio_type_e;
//--------------- define the structure and type of data that sender and receiver will exchange ----------------
typedef struct transcv_struct{
unsigned long topstationtime; // the top station sends its time (millis()) continously to the base station
volatile unsigned long topbuttonpressedtime; // the top station sends the time in millis() when the button was pressed - this is already the calculated time
volatile unsigned long topstationtime_us; // the top station sends its time (micros()) continously to the base station
volatile unsigned long topbuttonpressedtime_us; // the top station sends the time in millis() when the button was pressed - this is already the calculated time
}transcv_s;
#define MIN_DELAY_BETWEEN_SEND_MS 1000 // this defines the time in milliseconds before the next set of data will be send to the base station - except the button was pressed.
#define CONN_TIMEOUT 5000 // if there was no data received from the TOPSTATION for that amount of time - the connection is flagged as lost
#define MAX_DELAY_BETWEEN_SEND_US 1000000 // this defines the time in micro seconds before the next set of data will be send to the base station - except the button was pressed.
#define MIN_DELAY_BETWEEN_SEND_US 50000 // this defines the time in micro seconds before the next set of data will be send to the base station when the button was pressed or in initsequnce
#define CONN_TIMEOUT_MS 5000 // if there was no data received from the TOPSTATION for that amount of time - the connection is flagged as lost
#define KEY_BOUNCE_MS 50 // the time we use to avoid keybouncing ...
#define KEY_BOUNCE_MS 50 // the time we use to avoid keybouncing ...
#define KEY_LONGPRESSED_MS 1000
#define KEY_TOGGLE_MS 500 // the time between to key actions ...
#define KEY_TOGGLE_MS 500 // the time between to key actions ...
#define BUTTON_NOTPRESSED HIGH
#define BUTTON_PRESSED LOW
#define BUTTON_LONGPRESSED 3
typedef enum {BUTTON_STOPCANCEL = 0, BUTTON_START, BUTTON_FAIL,NO_LAST_BUTTON} button_number_e;
typedef enum {BUTTON_STOP = 0, BUTTON_CANCEL, BUTTON_START, BUTTON_FAIL,NO_LAST_BUTTON} button_number_e;
const uint8_t BUTTONPins[NO_LAST_BUTTON] = {
[BUTTON_STOPCANCEL] = 2, // stop/cancel button input pin
[BUTTON_START] = 4, // start button input pin
[BUTTON_FAIL] = 3, // stop button input pin
[BUTTON_STOP] = 2, // stop button input pin
[BUTTON_CANCEL] = 5, // cancel button input pin
[BUTTON_START] = 4, // start button input pin
[BUTTON_FAIL] = 3, // stop button input pin
};
#define MIN_DELAY_BETWEEN_PRESSED_MS 500 // this defines the time in milliseconds before the button is expected to be pressed again. We do this to avaoid keybouncing
#define MIN_DELAY_BETWEEN_PRESSED_US 500000 // this defines the time in microseconds before the button is expected to be pressed again. We do this to avaoid keybouncing
#define PIEZO_PIN 6 // piezo speaker
#define PIEZO_PIN 6 // piezo speaker
#define DISPLAY_I2C_ADDRESS 0x3C //Adress of the Display
#define DISPLAY_I2C_ADDRESS 0x3C //Adress of the Display
typedef enum {TIMER_INIT = 0, TIMER_NOCONNECTION, TIMER_IDLE, TIMER_READY, TIMER_STARTED, TIMER_RUNNING , TIMER_CANCELLED, TIMER_STOPPED, TIMER_TIMEDOUT, TIMER_FAIL, TIMER_WAIT, TIMER_SETTINGS} timer_state_e;
typedef enum {MODE_COMPETE = 0, MODE_TRAINING, MODE_CALIBRATION, NO_LAST_MODE} timer_mode_e; // compete - full mode with false start detector, training - no false start detection, calibration - parellel wired connection between top and base to kalibrate the offset calculation of the wireless connection
const char timer_mode_short[NO_LAST_MODE] = {[MODE_COMPETE]='F',[MODE_TRAINING]='T',[MODE_CALIBRATION]='C'};
const String timer_mode_string[NO_LAST_MODE] = {[MODE_COMPETE]="Competetion",[MODE_TRAINING]=" Training ",[MODE_CALIBRATION]="Calibration"};
#define LED_BLINK_ALL_MS 500 // LED set to BLINK will change there state every number of milli seconds specified here
#define LED_BLINK_ALL_MS 500 // LED set to BLINK will change there state every number of milli seconds specified here
// READY_LED, WARN_LED, RUN_LED, FAIL_LED
typedef enum {READY_LED = 0, RUN_LED, FAIL_LED, WARN_LED ,NO_LAST_LED} led_number_e; // leave NO_LAST_LED as last element - its our marker ...
const uint8_t LEDPins[NO_LAST_LED] = {
[READY_LED] =A2, // green ready LED
[RUN_LED] =A0, // blue run LED
[FAIL_LED] =A3, // red fail LED
[WARN_LED] =A1 // yellow warn LED
[READY_LED] =A2, // green ready LED
[RUN_LED] =A0, // blue run LED
[FAIL_LED] =A3, // red fail LED
[WARN_LED] =A1 // yellow warn LED
};
typedef enum {LED_OFF = 0, LED_ON, LED_BLINK } led_state_e;
const uint8_t LEDStates[][NO_LAST_LED] =
{
[TIMER_INIT] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_BLINK ,[WARN_LED]=LED_OFF}, // 0
[TIMER_INIT] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_BLINK ,[WARN_LED]=LED_OFF}, // 0
[TIMER_NOCONNECTION] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_ON, [WARN_LED]=LED_OFF}, // 1
[TIMER_IDLE] = {[READY_LED]=LED_ON, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_OFF}, // 2
[TIMER_READY] = {[READY_LED]=LED_BLINK, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_OFF}, // 3
[TIMER_READY] = {[READY_LED]=LED_BLINK, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_OFF}, // 3
[TIMER_STARTED] = {[READY_LED]=LED_ON, [RUN_LED]=LED_ON, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_OFF}, // 4
[TIMER_RUNNING] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_ON, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_OFF}, // 5
[TIMER_CANCELLED] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_ON, [WARN_LED]=LED_OFF}, // 6
[TIMER_STOPPED] = {[READY_LED]=LED_ON, [RUN_LED]=LED_ON, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_OFF}, // 7
[TIMER_TIMEDOUT] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_ON, [FAIL_LED]=LED_ON, [WARN_LED]=LED_OFF}, // 8
[TIMER_FAIL] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_BLINK, [FAIL_LED]=LED_ON, [WARN_LED]=LED_OFF}, // 9
[TIMER_WAIT] = {[READY_LED]=LED_ON, [RUN_LED]=LED_ON, [FAIL_LED]=LED_ON, [WARN_LED]=LED_ON}, // 10
[TIMER_SETTINGS] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_ON} // 11
[TIMER_FAIL] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_BLINK, [FAIL_LED]=LED_ON, [WARN_LED]=LED_OFF}, // 9
[TIMER_WAIT] = {[READY_LED]=LED_ON, [RUN_LED]=LED_ON, [FAIL_LED]=LED_ON, [WARN_LED]=LED_ON}, // 10
[TIMER_SETTINGS] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_ON} // 11
};
#define MAX_DIFFERENCE_OFFSET_MS 100 // 0,001sec is the maximum offset we allow between the current offset and the mean offset. if it is more - restart offset calculation
#define REQUIRED_NUMBER_MEANVALS 100 // we need at least this number of meanvalues to be ready to start a run
#define MAX_DIFFERENCE_OFFSET_US 100000 // 0,001sec is the maximum offset we allow between the current offset and the mean offset. if it is more - restart offset calculation
#define REQUIRED_NUMBER_MEANVALS 1 // we need at least this number of meanvalues to be ready to start a run
#define MAX_ALLOWED_FAILED_OFFSETS 10 // if more than this number of offsets are out of the specified MAX_DIFFERENCE_OFFSET_MS value, offset calcultion will be restarted
#define STARTSEQ_STEPS 4
const uint8_t STARTSEQ_NOTES[] = {0,392,392,1047}; // tone frequence
const uint16_t STARTSEQ_DURATION[] = {0,200,200,100}; // tone duration in milliseconds
const unsigned long STARTSEQ_PAUSE[] = {1000000,1000000,1000000,100000}; // pause between tones in microseconds
#define STARTSEQ_LENGTH_MS 3100 // the length of the start sequence from the time the button was pressed ... includes the 3 tones
const uint8_t STARTSEQ_NOTES[] = {0,392,392,1047}; // tone frequence
const uint16_t STARTSEQ_DURATION_MS[] = {0,200,200,100}; // tone duration in milliseconds
const unsigned long STARTSEQ_PAUSE_US[] = {1000000,1000000,1000000,100000}; // pause between tones in microseconds
#define STARTSEQ_LENGTH_US 3100000 // the length of the start sequence from the time the button was pressed ... includes the 3 tones
#define FAILSEQ_STEPS 2
const uint8_t FAILSEQ_NOTES[] = {49,49}; // tone frequence
const uint16_t FAILSEQ_DURATION[] = {300,300}; // tone duration in milliseconds
const unsigned long FAILSEQ_PAUSE[] = {400000,400000}; // pause between tones in microseconds
const uint8_t FAILSEQ_NOTES[] = {49,49}; // tone frequence
const uint16_t FAILSEQ_DURATION_MS[] = {300,300}; // tone duration in milliseconds
const unsigned long FAILSEQ_PAUSE_US[] = {400000,400000}; // pause between tones in microseconds
#define TIMER_MAX_TIME 99999
#define TIMER_TIMEOUT 20000
#define TIMER_MAX_TIME_US 99999999
#define TIMER_TIMEOUT_US 20000000
//--------------------------------------- function declarations ----------------------------------------------
void receive_values(void);
void update_offset_values(void);
void false_start_isr(void);
void update_screen(timer_state_e state);
void set_state_LEDs(timer_state_e state, boolean warn);
@ -108,5 +111,8 @@ void start_isr(void);
void update_buttons(void);
void send_values(void);
void stop_isr(void);
String micros2string(signed long microsecs);
void nrf24_isr(void);
void handle_connection(void);
signed long calc_mean_offset(signed long current_toptime);
#endif

View file

@ -15,49 +15,61 @@ uint8_t radio_sel0, radio_sel1; // code of type of station
/* Hardware configuration: Set up nRF24L01 radio on SPI bus plus pins 7 & 8 */
RF24 radio(RF24_CNS,RF24_CE);
/**********************************************************/
byte addresses[][12] = {"top_station","basestation"}; // Radio pipe addresses for the 2 nodes to communicate.
byte addresses[][12] = {"top_station","basestation"}; // Radio pipe addresses for the 2 nodes to communicate.
unsigned long stats_last_plotted = 0;
unsigned long stats_last_plotted_at_ms = 0;
unsigned long startloop_ms = 0;
boolean offset_sync_sequence = true; // set to true as the offset sync / calibration is not done - sending data to the basestation is more often as after the sync is done ...
boolean offset_sync_sequence = true; // set to true as the offset sync / calibration is not done - sending data to the basestation is more often as after the sync is done ...
boolean blink_on = false; // set to TRUE if the system clock cycle signals to set LEDs in LED_BLINK mode to be active - means top be switched on
unsigned long blink_on_swiched_at = 0; // the last system time (in milliseconds) the blink_on was switched
boolean blink_on = false; // set to TRUE if the system clock cycle signals to set LEDs in LED_BLINK mode to be active - means top be switched on
unsigned long blink_on_swiched_at_ms = 0; // the last system time (in milliseconds) the blink_on was switched
uint8_t *leds_states = LEDStates[TIMER_INIT];
boolean time_offset_ok = false; // true as long as the offset is correctly calculated
uint16_t counter_time_offset = 0; // number of used values for the mean value calculation
signed long sum_time_offset = 0; // sum of offset values
signed long current_time_offset = 0; // current offset ...
signed long mean_time_offset = 0; // mean value for the offset
signed long running_time_offset = 0; // offset that will be used for this run ...
volatile unsigned long start_time = 0; // if the timer is running this is that start time ... (use volatile for all shared variables that deals with hardware)
volatile unsigned long runner_start_time = 0; // this is the time the runner left the pad - so the status of the falsetstart pin goes to high again - but this is OK and a real start (use volatile for all shared variables that deals with hardware)
unsigned long run_time = 0; // if the timer is running this is that start time ...
boolean warn_during_run = false; // will be set to true if there is a warning during the run - usually an offset sync error
unsigned long connection_last_established_at_ms = 0; // time the last active connection was established
boolean connection_available = false; // if there were no data for longer then CONN_TIMEOUT the connection will be flaged as lost ...
boolean keep_connection_off = true; // if sett to true the connection to the top station will be kept off for a timeout time to signal that we are in the init sequnce again ...
uint8_t failed_offsets = MAX_ALLOWED_FAILED_OFFSETS; // number of offset values that did not fullfill the MAX_DIFFERENCE_OFFSET_MS criterion
volatile boolean false_start = false; // set to true if a false start occurs (use volatile for all shared variables that deals with hardware)
volatile uint8_t startsequence_count = 0; // shows thze actual step in the startsquence. Number of steps is defined in STARTSEQ_STEPS (use volatile for all shared variables that deals with hardware)
volatile boolean startsequence_done = false; // set to TRUE if the startsequnce was completed successfully (without a false start)
boolean time_offset_ok = false; // true as long as the offset is correctly calculated
volatile boolean new_current_offset_available = false;
uint16_t counter_time_offset = 0; // number of used values for the mean value calculation
signed long long sum_time_offset_us = 0; // sum of offset values
float sum_time_slope = 0; // sum of slopes
volatile unsigned long last_top_time_us = 0; // current top time ...
volatile unsigned long current_top_time_us = 0; // current top time ...
volatile unsigned long last_bottom_time_us = 0; // current top time ...
volatile unsigned long current_bottom_time_us = 0; // current top time ...
volatile signed long current_time_offset_us = 0; // current offset ...
signed long mean_time_offset_us = 0; // mean value for the offset (we have an linear sync function to map the TOPSTATION time to BOTTOMSTATIONTIME : t
float mean_time_slope = 0; // mean slope
signed long running_time_offset_us = 0; // offset that will be used for this run ...
volatile unsigned long start_time_us = 0; // if the timer is running this is that start time ... (use volatile for all shared variables that deals with hardware)
volatile unsigned long runner_start_time_us = 0; // this is the time the runner left the pad - so the status of the falsetstart pin goes to high again - but this is OK and a real start (use volatile for all shared variables that deals with hardware)
unsigned long run_time_us = 0; // if the timer is running this is that start time ...
boolean warn_during_run = false; // will be set to true if there is a warning during the run - usually an offset sync error
volatile unsigned long connection_last_established_at_ms = 0; // time the last active connection was established
volatile boolean connection_available = false; // if there were no data for longer then CONN_TIMEOUT the connection will be flaged as lost ...
boolean keep_connection_off = true; // if sett to true the connection to the top station will be kept off for a timeout time to signal that we are in the init sequnce again ...
uint8_t failed_offsets = MAX_ALLOWED_FAILED_OFFSETS; // number of offset values that did not fullfill the MAX_DIFFERENCE_OFFSET_MS criterion
volatile boolean false_start = false; // set to true if a false start occurs (use volatile for all shared variables that deals with hardware)
volatile uint8_t startsequence_count = 0; // shows thze actual step in the startsquence. Number of steps is defined in STARTSEQ_STEPS (use volatile for all shared variables that deals with hardware)
volatile boolean startsequence_done = false; // set to TRUE if the startsequnce was completed successfully (without a false start)
volatile boolean failsequence_done = false;
volatile uint8_t failsequence_count = 0;
boolean topbuttonwaspressed = false; // set to true if the stop button was pressed
boolean topbuttonwaspressed = false; // set to true if the stop button was pressed
uint8_t button_state[NO_LAST_BUTTON] = {BUTTON_NOTPRESSED};
unsigned long button_last_changed_at[NO_LAST_BUTTON] = {0};
unsigned long button_last_changed_at_ms[NO_LAST_BUTTON] = {0};
uint8_t button_last_changed_to[NO_LAST_BUTTON] = {BUTTON_NOTPRESSED};
timer_state_e timer_state = TIMER_INIT; // current state needs to be initialized to somethin different then new_state due to the fact that some pieces of the code check for differnt values of state and _new_state to detect an update...
timer_state_e timer_new_state = TIMER_NOCONNECTION; // next state - in the startup phase the first state - will be TIMER_NOCONNECTION ... checking if a connection to TOPSTATION is established
timer_state_e timer_state = TIMER_INIT; // current state needs to be initialized to somethin different then new_state due to the fact that some pieces of the code check for differnt values of state and _new_state to detect an update...
timer_state_e timer_new_state = TIMER_NOCONNECTION; // next state - in the startup phase the first state - will be TIMER_NOCONNECTION ... checking if a connection to TOPSTATION is established
timer_mode_e timer_mode = MODE_COMPETE; // mode of the BASESTATION - this can be changed in IDLE state by pressing the CANCEL button
unsigned long timer_mode_changed_at = 0;
timer_mode_e timer_mode = MODE_COMPETE; // mode of the BASESTATION - this can be changed in IDLE state by pressing the CANCEL button
unsigned long timer_mode_changed_at_ms = 0;
transcv_s radio_data;
void setup(){
@ -92,10 +104,10 @@ void setup(){
// Setup and configure the NRF radio
// radio setup ...
radio.begin();
radio.setRetries(15, 15); //the first is the time between reties in multiple of 250ms, the second is the numer of attempts
radio.setRetries(1, 1); //the first is the time between reties in multiple of 250ms, the second is the numer of attempts
if(stationNumber == TOPSTATION){
// Attach the STOP button interrupt
attachInterrupt(digitalPinToInterrupt(BUTTONPins[BUTTON_STOPCANCEL]), stop_isr, FALLING );
attachInterrupt(digitalPinToInterrupt(BUTTONPins[BUTTON_STOP]), stop_isr, FALLING );
// Set the PA Level of the sendin TOP_STATION
radio.setPALevel(RF24_PA_LEVEL);
radio.openWritingPipe(addresses[1]); // Both radios listen on the same pipes by default, but opposite addresses
@ -106,8 +118,8 @@ void setup(){
radio.openReadingPipe(1,addresses[1]);
radio.startListening();
}
radio_data.topstationtime = millis(); // set the current milli second count
radio_data.topbuttonpressedtime = 0; // set the time the button was pressed last time to 0
radio_data.topstationtime_us = micros(); // set the current micro second count
radio_data.topbuttonpressedtime_us = 0; // set the time the button was pressed last time to 0
//initialise Wire and OLED
Wire.begin();
@ -121,8 +133,8 @@ void loop(void) {
/****************** Shared code for all stations ********************************************************************************/
startloop_ms = millis();
if(millis() - blink_on_swiched_at > LED_BLINK_ALL_MS){
blink_on_swiched_at = millis();
if(millis() - blink_on_swiched_at_ms > LED_BLINK_ALL_MS){
blink_on_swiched_at_ms = millis();
blink_on = !blink_on;
}
@ -165,7 +177,7 @@ void loop(void) {
timer_new_state = TIMER_NOCONNECTION;
} else {
if(false == offset_sync_sequence){
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
if(button_state[BUTTON_STOP] == BUTTON_NOTPRESSED){
topbuttonwaspressed = false;
timer_new_state = TIMER_IDLE;
}
@ -184,8 +196,8 @@ void loop(void) {
break;
case TIMER_STOPPED:
// wait a few millis and ... after that go back to idle ...
if((signed long)(millis() - radio_data.topbuttonpressedtime) > MIN_DELAY_BETWEEN_PRESSED_MS){
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
if((signed long)(micros() - radio_data.topbuttonpressedtime_us) > MIN_DELAY_BETWEEN_PRESSED_US){
if(button_state[BUTTON_STOP] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_IDLE;
topbuttonwaspressed = false;
}
@ -198,8 +210,11 @@ void loop(void) {
/****************** Code for the BASESTATION is here - the display and the start button is connected here. All caclulation will be done here ***************************/
if ( stationNumber == BASESTATION ) {
// receive data from top_station, calculate offset and set 'last connection' time stamp
receive_values();
// update connection status
handle_connection();
// calculate offset and set 'last connection' time stamp
//update_offset_values();
// update the OLED screen
update_screen(timer_new_state);
@ -225,7 +240,7 @@ void loop(void) {
else{
// if the offset is claculated, cancel not pressed and failstart not pressed switch to IDLE mode ...
if((time_offset_ok == true) &&
(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED) )
{
// check if offset is OK - if not .. set state back to INIT
@ -250,11 +265,11 @@ void loop(void) {
// check if the FALSESTATE button is pressed OR we are in trainingsmode - somebody is ready to run, but STARTBUTTON is NOT pressed ...
if(((button_state[BUTTON_FAIL] != BUTTON_NOTPRESSED) || (timer_mode != MODE_COMPETE)) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED))
(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED))
{
timer_new_state = TIMER_READY;
} else {
if((button_state[BUTTON_STOPCANCEL] == BUTTON_LONGPRESSED) &&
if((button_state[BUTTON_CANCEL] == BUTTON_LONGPRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED))
{
@ -277,7 +292,7 @@ void loop(void) {
// now enable the interrupt for the FALSESTART button
startsequence_count = 0;
startsequence_done = false;
running_time_offset = mean_time_offset;
running_time_offset_us = mean_time_offset_us;
false_start = false;
if(timer_mode == MODE_COMPETE){
attachInterrupt(digitalPinToInterrupt(BUTTONPins[BUTTON_FAIL]), false_start_isr, RISING );
@ -285,11 +300,11 @@ void loop(void) {
Timer1.initialize();
timer_new_state = TIMER_STARTED;
// set the startime - this is the current time plus the length of this sequence
start_time = millis() + STARTSEQ_LENGTH_MS;
start_time_us = micros() + STARTSEQ_LENGTH_US;
// call the start sequence interrupt routine ...
Timer1.attachInterrupt(start_isr,STARTSEQ_PAUSE[startsequence_count]); // startISR to run every given microseconds
Timer1.attachInterrupt(start_isr,STARTSEQ_PAUSE_US[startsequence_count]); // startISR to run every given microseconds
} else {
if((button_state[BUTTON_STOPCANCEL] == BUTTON_LONGPRESSED) &&
if((button_state[BUTTON_CANCEL] == BUTTON_LONGPRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED))
{
@ -306,7 +321,7 @@ void loop(void) {
failsequence_done = false;
failsequence_count = 0;
timer_new_state = TIMER_FAIL;
Timer1.attachInterrupt(failSequence,FAILSEQ_PAUSE[failsequence_count]);
Timer1.attachInterrupt(failSequence,FAILSEQ_PAUSE_US[failsequence_count]);
} else {
if(startsequence_done == true){
timer_new_state = TIMER_RUNNING;
@ -318,15 +333,15 @@ void loop(void) {
// check if offset is still OK - if not .. set warning
warn_during_run = true;
}
if((signed long)(millis() - start_time) > TIMER_TIMEOUT){
if((signed long)(micros() - start_time_us) > TIMER_TIMEOUT_US){
timer_new_state = TIMER_TIMEDOUT;
} else {
if(button_state[BUTTON_STOPCANCEL] != BUTTON_NOTPRESSED){
if(button_state[BUTTON_CANCEL] != BUTTON_NOTPRESSED){
timer_new_state = TIMER_CANCELLED;
} else {
if(radio_data.topbuttonpressedtime > running_time_offset){
if((radio_data.topbuttonpressedtime - running_time_offset) > start_time){
run_time = (radio_data.topbuttonpressedtime - running_time_offset) - start_time;
if(radio_data.topbuttonpressedtime_us > running_time_offset_us){
if((signed long)(radio_data.topbuttonpressedtime_us - running_time_offset_us) > start_time_us){
run_time_us = (radio_data.topbuttonpressedtime_us - running_time_offset_us) - start_time_us;
timer_new_state = TIMER_STOPPED;
}
}
@ -335,39 +350,36 @@ void loop(void) {
break;
case TIMER_STOPPED:
//calculate the run_time and switch to WAIT
delay(KEY_BOUNCE_MS);
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT;
}
break;
case TIMER_FAIL:
//fail start case ....
run_time = 99999;
run_time_us = TIMER_MAX_TIME_US;
if(true == failsequence_done){
delay(KEY_BOUNCE_MS);
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT;
}
}
break;
case TIMER_CANCELLED:
// what to do in chancel mode ?
run_time = 99999;
delay(KEY_BOUNCE_MS);
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
run_time_us = TIMER_MAX_TIME_US;
if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT;
}
break;
case TIMER_TIMEDOUT:
// time out
run_time = millis() - start_time;
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
run_time_us = micros() - start_time_us;
if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT;
}
break;
case TIMER_WAIT:
// wait until the chancel button was pressed to go ahead
if((button_state[BUTTON_STOPCANCEL] != BUTTON_NOTPRESSED) &&
if((button_state[BUTTON_CANCEL] != BUTTON_NOTPRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED)
)
@ -377,16 +389,16 @@ void loop(void) {
break;
case TIMER_SETTINGS:
// switch between the different modes for now - compete, training and calibration ...
if((button_state[BUTTON_STOPCANCEL] == BUTTON_PRESSED) &&
if((button_state[BUTTON_CANCEL] == BUTTON_PRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED))
{
// go back to idle
timer_new_state = TIMER_IDLE;
} else {
if((button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED) &&
if((button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_START] == BUTTON_PRESSED))
{
if((millis() - timer_mode_changed_at) > KEY_TOGGLE_MS){
if((millis() - timer_mode_changed_at_ms) > KEY_TOGGLE_MS){
// switch system mode ...
switch(timer_mode){
case MODE_COMPETE:
@ -399,7 +411,7 @@ void loop(void) {
timer_mode = MODE_COMPETE;
break;
}
timer_mode_changed_at = millis();
timer_mode_changed_at_ms = millis();
}
}
@ -408,21 +420,68 @@ void loop(void) {
}
}
if( (STATS_PLOTS_EVERY_MS > 0) &&
((millis() -stats_last_plotted) > STATS_PLOTS_EVERY_MS))
{
Serial.println("mean_time_offset-current_time_offset");
Serial.print((signed long)(mean_time_offset - current_time_offset));
//Serial.print(" ");
//Serial.println(millis()- startloop_ms);
stats_last_plotted = millis();
/*
// ignore the first seconds ...
if(time_offset_ok == true){
if( (STATS_PLOTS_EVERY_MS > 0) &&
((signed long)(millis() -stats_last_plotted_at_ms) > STATS_PLOTS_EVERY_MS))
{
//Serial.println("mean_time_offset-current_time_offset");
//Serial.println(calc_mean_offset(current_top_time_us));
//Serial.print(" ");
//Serial.print(mean_time_offset_us);
//Serial.print(" ");
//Serial.println(current_time_offset_us);
stats_last_plotted_at_ms = millis();
}
}
*/
}
//####################### HELPER FUNCTIONS ###########################
signed long calc_top2bot_time(signed long current_toptime){
return((mean_time_slope*current_toptime) + mean_time_offset_us);
}
void nrf24_isr(void)
{
//Serial.println("Got data from TOPSTATION");
bool tx,fail,rx;
// wait the connection time out time before receiving data - this is to tell the TOP_STATION to resend offset values in fast mode ...
if(keep_connection_off == false){
radio.whatHappened(tx,fail,rx); // What happened?
if ( rx ){
// check if radio data is available - if so read the data
// read data from TOP_STATION ...
//while( radio.available()){ // Read all available payloads
radio.read( &radio_data, sizeof(radio_data) ); // Read the data the TOPSTATION sent
//}
if(new_current_offset_available == false){
last_top_time_us = current_top_time_us;
current_top_time_us = radio_data.topstationtime_us;
last_bottom_time_us = current_bottom_time_us;
current_bottom_time_us = micros();
//new_current_offset_available = true;
Serial.print(" last_top_time_us:");
Serial.print(last_top_time_us);
Serial.print(" current_top_time_us:");
Serial.print(current_top_time_us);
Serial.print(" last_bottom_time_us.");
Serial.print(last_bottom_time_us);
Serial.print(" current_bottom_time_us:");
Serial.println(current_bottom_time_us);
Serial.print("current offset:");
Serial.println((signed long)(current_top_time_us - current_bottom_time_us));
}
connection_last_established_at_ms = millis();
connection_available = true;
}
}
}
void update_buttons(void){
uint8_t curr_button_state;
unsigned long button_pressed_at = millis();
unsigned long button_pressed_at_ms = millis();
String state_string;
// we have some buttons to update that are used in the sketch ...
for(uint8_t button = 0; button < NO_LAST_BUTTON; button++){
@ -435,7 +494,7 @@ void update_buttons(void){
curr_button_state = BUTTON_PRESSED;
}
if( curr_button_state != button_last_changed_to[button] ){
button_last_changed_at[button] = button_pressed_at;
button_last_changed_at_ms[button] = button_pressed_at_ms;
button_last_changed_to[button] = curr_button_state;
}
@ -443,7 +502,7 @@ void update_buttons(void){
((curr_button_state == BUTTON_PRESSED) && (button_state[button] == BUTTON_NOTPRESSED))) // the button has changed its state
{
// is that bouncing or settled?
if((unsigned long)(button_pressed_at - button_last_changed_at[button]) > KEY_BOUNCE_MS){
if((unsigned long)(button_pressed_at_ms - button_last_changed_at_ms[button]) > KEY_BOUNCE_MS){
// settled! -> change the stored state.
button_state[button] = curr_button_state;
} else {
@ -453,7 +512,7 @@ void update_buttons(void){
(button_state[button] == BUTTON_PRESSED))
{
//check for long pressed button ...
if((unsigned long)(button_pressed_at - button_last_changed_at[button]) > KEY_LONGPRESSED_MS){
if((unsigned long)(button_pressed_at_ms - button_last_changed_at_ms[button]) > KEY_LONGPRESSED_MS){
button_state[button] = BUTTON_LONGPRESSED;
}
}
@ -461,101 +520,143 @@ void update_buttons(void){
}
}
void receive_values(void){
// wait the connection time out time before receiving data - this is to tell the TOP_STATION to resend offset values in fast mode ...
if(keep_connection_off){
if((millis() - connection_last_established_at_ms) > (2*CONN_TIMEOUT)){
void handle_connection(void){
if(keep_connection_off == true){
// Attach the RF24 IRQ pin interrupt
detachInterrupt(digitalPinToInterrupt(RF24_IRQ));
connection_available = false;
if((millis() - connection_last_established_at_ms) > (2*CONN_TIMEOUT_MS)){
keep_connection_off = false;
//Serial.print("Connection ON allowed.");
} else {
//Serial.print("Connection OFF forced.");
// Attach the RF24 IRQ pin interrupt
attachInterrupt(digitalPinToInterrupt(RF24_IRQ), nrf24_isr, LOW );
}
} else
{
// check if radio data is available - if so read the data
if( radio.available()){
// read data from TOP_STATION ...
while( radio.available()){ // Read all available payloads
radio.read( &radio_data, sizeof(radio_data) ); // Read the data the TOPSTATION sent
}
connection_last_established_at_ms = millis();
connection_available = true;
current_time_offset = radio_data.topstationtime - millis(); // the offset between TOP_STATION and BASESTATION
/*
Serial.print("Current time on host in millis:");
Serial.print(millis());
Serial.print(" Current time on client in millis: ");
Serial.println(radio_data.topstationtime);
Serial.print("Offset is: ");
Serial.println(current_time_offset);
Serial.print(" Button was pressed last time on client in millis: ");
Serial.println(radio_data.topbuttonpressedtime);
*/
// offset calculation ... only needed if the variation is bigger than allowed or not enough values available already ...
if(counter_time_offset == 0){
// this is the initial setup to start with something - in this case the last offset value that was received
mean_time_offset = current_time_offset;
}
// check current offset of the TOP_STATIOn and the BASESTATION if more than allowed ...
if(abs(current_time_offset - mean_time_offset) < MAX_DIFFERENCE_OFFSET_MS){
// if the current value is in range - decrease the fail counter by 1 if it was not zero already
if(failed_offsets > 0){
//Serial.println("INFO: The last received TOPSTATION offset time stamp was again in range. Decrease internal fail counter");
failed_offsets--;
}
// the offset is in range - check if we have already enough values of if we need to add more ...
if(counter_time_offset <= REQUIRED_NUMBER_MEANVALS){
//add the next value to meanvalue calculation ...
sum_time_offset = sum_time_offset + current_time_offset;
counter_time_offset++;
mean_time_offset = sum_time_offset/counter_time_offset;
Serial.print("Offset calulation. We have ");
Serial.print(counter_time_offset);
Serial.print("/");
Serial.print(REQUIRED_NUMBER_MEANVALS);
Serial.print(" values. Mean offset value based on that is: ");
Serial.println(mean_time_offset);
} else {
time_offset_ok = true;
}
} else {
// the current offset is out of range ...
// if the values before also already failed the criterion but the max allowed number of such fails is not reached ... just increase the counter.
if(failed_offsets < MAX_ALLOWED_FAILED_OFFSETS){
//Serial.println("WARNING: The last received TOPSTATION offset time stamp was out of range. Increase internal fail counter");
failed_offsets++;
}
else{
// if the values before also already failed the criterion AND the max allowed number of such fails is reached ... we need to restart the mean calculation and set the timer to unready state ...
Serial.println("TopStation and BaseStation are out off sync. Offset calculation will be (re)started. ");
//Serial.print("Last ");
//Serial.print(MAX_ALLOWED_FAILED_OFFSETS);
//Serial.print(" offsets (last one: ");
//Serial.print(current_time_offset);
//Serial.print(" ) were to far from the mean offset ");
//Serial.println( abs(current_time_offset - mean_time_offset) );
//Serial.print("This more than the allowed: ");
//Serial.print(MAX_DIFFERENCE_OFFSET_MS);
//Serial.print(" compared to the mean offset: ");
//Serial.println(mean_time_offset);
time_offset_ok = false;
counter_time_offset = 0;
sum_time_offset = 0;
mean_time_offset = 0;
failed_offsets = 0;
} // out of range counter exceeds maximum value
} // time offset of TOPSTATION out of range
}
else{
// remove the RF24 connection flag if no data was received for longer time
if((millis() - connection_last_established_at_ms >= CONN_TIMEOUT) || (connection_last_established_at_ms == 0)){
connection_available = false;
Serial.println("ERROR: No connection established to TOPSTATION");
}
} else {
// remove the RF24 connection flag if no data was received for longer time
if((millis() - connection_last_established_at_ms >= CONN_TIMEOUT_MS) || (connection_last_established_at_ms == 0)){
connection_available = false;
Serial.println("ERROR: No connection established to TOPSTATION");
} // radio available
} // keep connection off
}
void update_offset_values(void){
float int_time_slope = 1.0;
signed long int_time_delta_x = 0;
signed long int_time_delta_y = 0;
signed long int_time_offset_us = 0;
unsigned long int_current_bot_time_us = 0;
unsigned long int_calc_bot_time_us = 0;
unsigned long int_current_top_time_us = 0;
signed long int_current_calc2real_offset = 0;
if((new_current_offset_available == true) && // there is a new value
(last_top_time_us != 0) && // the last top time is updated already
(current_top_time_us != 0) && // the current top time is updated
(last_bottom_time_us != 0) && // the last bottom time is updated
(current_bottom_time_us != 0)) // the current bottom time is updated
{
//calculate the last and the current offset based on what we got from Topstation
int_current_bot_time_us = current_bottom_time_us;
int_time_delta_y = current_bottom_time_us-last_bottom_time_us;
int_time_delta_x = current_top_time_us-last_top_time_us;
new_current_offset_available = false;
if(counter_time_offset == 0){
// this is the initial setup to start with something - in this case the last offset value that was received
int_current_calc2real_offset = 0;
} else {
int_calc_bot_time_us = calc_top2bot_time(current_top_time_us);
int_current_calc2real_offset = int_calc_bot_time_us - int_current_bot_time_us;
//Serial.print("Counter:");
//Serial.println(counter_time_offset);
//Serial.print("Calculated bot time:");
//Serial.println(int_calc_bot_time_us);
//Serial.print("Real bot time:");
//Serial.println(int_current_bot_time_us);
Serial.print("So offset between calc and Real bot time:");
Serial.println(abs(int_current_calc2real_offset));
// Serial.print("function offset:");
//Serial.println(mean_time_offset_us);
//Serial.print("function slope:");
//Serial.println((float)mean_time_slope);
}
// check current offset of the TOP_STATIOn and the BASESTATION if more than allowed ...
if(abs(int_current_calc2real_offset) < MAX_DIFFERENCE_OFFSET_US){
// if the current value is in range - decrease the fail counter by 1 if it was not zero already
if(failed_offsets > 0){
Serial.println("INFO: The last received TOPSTATION offset time stamp was again in range. Decrease internal fail counter");
failed_offsets--;
}
// the offset is in range - check if we have already enough values of if we need to add more ...
if(counter_time_offset <= REQUIRED_NUMBER_MEANVALS){
//add the next value to meanvalue calculation ...
int_time_slope = (float)(int_time_delta_y / int_time_delta_x);
int_time_offset_us = current_bottom_time_us - (int_time_slope*current_top_time_us);
//Serial.print(" offset is: ");
//Serial.print(int_time_offset_us);
//Serial.print(" int_time_delta_y:");
//Serial.print(int_time_delta_y);
//Serial.print(" int_time_delta_x:");
//Serial.print(int_time_delta_x);
//Serial.print(" int_time_slope:");
//Serial.println(int_time_slope);
sum_time_offset_us = sum_time_offset_us + int_time_offset_us;
sum_time_slope = sum_time_slope + int_time_slope;
counter_time_offset++;
mean_time_offset_us = sum_time_offset_us/counter_time_offset;
mean_time_slope = sum_time_slope/counter_time_offset;
Serial.print("Offset calulation. We have ");
Serial.print(counter_time_offset);
Serial.print("/");
Serial.print(REQUIRED_NUMBER_MEANVALS);
Serial.print(" values. y=slope*x+offset. Mean offset value based on that is: ");
Serial.print(mean_time_offset_us);
Serial.print(" mean slope: ");
Serial.println(mean_time_slope);
} else {
time_offset_ok = true;
}
} else {
// the current offset is out of range ...
// if the values before also already failed the criterion but the max allowed number of such fails is not reached ... just increase the counter.
if(failed_offsets < MAX_ALLOWED_FAILED_OFFSETS){
Serial.println("WARNING: The last received TOPSTATION offset time stamp was out of range. Increase internal fail counter");
failed_offsets++;
}
else{
// if the values before also already failed the criterion AND the max allowed number of such fails is reached ... we need to restart the mean calculation and set the timer to unready state ...
Serial.println("TopStation and BaseStation are out off sync. Offset calculation will be (re)started. ");
//Serial.print("Last ");
//Serial.print(MAX_ALLOWED_FAILED_OFFSETS);
//Serial.print(" offsets (last one: ");
//Serial.print(current_time_offset);
//Serial.print(" ) were to far from the mean offset ");
//Serial.println( abs(current_time_offset - mean_time_offset) );
//Serial.print("This more than the allowed: ");
//Serial.print(MAX_DIFFERENCE_OFFSET_MS);
//Serial.print(" compared to the mean offset: ");
//Serial.println(mean_time_offset);
time_offset_ok = false;
counter_time_offset = 0;
sum_time_offset_us = 0;
sum_time_slope = 0;
mean_time_offset_us = 0;
mean_time_slope = 0;
failed_offsets = 0;
} // out of range counter exceeds maximum value
} // time offset of TOPSTATION out of range
} else {
new_current_offset_available = false;
}
}// receive values
void update_screen(timer_state_e state){
@ -567,7 +668,7 @@ void update_screen(timer_state_e state){
char string_to_char[50];
float curr_time_local = 0.0;
signed long curr_time_local_s = 0;
switch(state){
case TIMER_NOCONNECTION:
@ -582,27 +683,27 @@ void update_screen(timer_state_e state){
break;
case TIMER_IDLE:
header = "Idle!";
content = "00.00 sec";
content = "00.000 sec";
footer = "Waiting for climber";
break;
case TIMER_READY:
header = "Ready!";
content = "00.00 sec";
content = "00.000 sec";
footer = "Waiting for start";
break;
case TIMER_STARTED:
header = "Starting ...";
content = "00.00 sec";
content = "00.000 sec";
footer = "...";
break;
case TIMER_RUNNING:
header = "Running ...";
curr_time_local = (millis() - start_time)/1000.000;
content = curr_time_local;
curr_time_local_s = (micros() - start_time_us);
content = micros2string(curr_time_local_s);
content += " sec";
curr_time_local = (runner_start_time - start_time)/1000.000;
curr_time_local_s = (runner_start_time_us - start_time_us);
footer = "Reaction time: ";
footer += curr_time_local;
footer += micros2string(curr_time_local_s);
footer += " sec";
break;
case TIMER_CANCELLED:
@ -610,12 +711,12 @@ void update_screen(timer_state_e state){
break;
case TIMER_STOPPED:
header = "Stopped!";
curr_time_local = run_time/1000.000;
content = curr_time_local;
curr_time_local_s = run_time_us;
content = micros2string(curr_time_local_s);
content += " sec";
curr_time_local = (runner_start_time - start_time)/1000.000;
curr_time_local_s = (runner_start_time_us - start_time_us);
footer = "Reaction time: ";
footer += curr_time_local;
footer += micros2string(curr_time_local_s);
footer += " sec";
break;
case TIMER_TIMEDOUT:
@ -624,8 +725,8 @@ void update_screen(timer_state_e state){
break;
case TIMER_FAIL:
header = "False start!";
curr_time_local = (start_time - runner_start_time)/1000.000;
content = curr_time_local;
curr_time_local_s = (start_time_us - runner_start_time_us);
content = micros2string(curr_time_local_s);
footer = "seconds too early";
break;
case TIMER_SETTINGS:
@ -721,9 +822,9 @@ void failSequence(void){
// first tone
if(failsequence_count <FAILSEQ_STEPS){
// play the tone ...
tone( PIEZO_PIN, FAILSEQ_NOTES[failsequence_count],FAILSEQ_DURATION[failsequence_count] );
tone( PIEZO_PIN, FAILSEQ_NOTES[failsequence_count],FAILSEQ_DURATION_MS[failsequence_count] );
if(failsequence_count > 0){
Timer1.setPeriod(FAILSEQ_PAUSE[failsequence_count]);
Timer1.setPeriod(FAILSEQ_PAUSE_US[failsequence_count]);
}
// increase the counter
failsequence_count++;
@ -739,7 +840,7 @@ void stop_isr(void){
// this is the interrupt routine for the topstation STOP button
// this will save the time when the runner has pushed the button
if(timer_state == TIMER_IDLE){
radio_data.topbuttonpressedtime = millis();
radio_data.topbuttonpressedtime_us = micros();
//Serial.print(radio_data.topbuttonpressedtime);
//Serial.println(" ms <- current time ** stop_ISR ** stop button pushed: ");
topbuttonwaspressed = true;
@ -750,7 +851,7 @@ void false_start_isr(void) {
// this is the interrupt routine for the FALSESTART button
// this will save the time when the runner is really started
if(timer_new_state != TIMER_READY){
runner_start_time = millis();
runner_start_time_us = micros();
//Serial.print(runner_start_time);
//Serial.println(" ms <- current time ** false_start_ISR ** false start button released: ");
if(false == startsequence_done){
@ -773,8 +874,8 @@ void start_isr(void){
if(startsequence_count > 0){
// play the tone ...
//Serial.println(STARTSEQ_DURATION[startsequence_count]);
tone( PIEZO_PIN, STARTSEQ_NOTES[startsequence_count],STARTSEQ_DURATION[startsequence_count] );
Timer1.setPeriod(STARTSEQ_PAUSE[startsequence_count]);
tone( PIEZO_PIN, STARTSEQ_NOTES[startsequence_count],STARTSEQ_DURATION_MS[startsequence_count] );
Timer1.setPeriod(STARTSEQ_PAUSE_US[startsequence_count]);
}
// increase the counter
startsequence_count++;
@ -791,21 +892,21 @@ void start_isr(void){
}
void send_values(void){
if(offset_sync_sequence || topbuttonwaspressed || ((millis()-radio_data.topstationtime) >= MIN_DELAY_BETWEEN_SEND_MS)){
if((((micros()-radio_data.topstationtime_us) > MIN_DELAY_BETWEEN_SEND_US) && (offset_sync_sequence || topbuttonwaspressed)) || ((micros()-radio_data.topstationtime_us) >= MAX_DELAY_BETWEEN_SEND_US)){
// store current millis to be send as reference ...
radio_data.topstationtime = millis(); // set the current milli second count
radio_data.topstationtime_us = micros(); // set the current micro second count
//Serial.print("senddate_to_base at:");
//Serial.println(millis());
//Serial.print(" -> topstationtime:");
//Serial.print(radio_data.topstationtime);
//Serial.print("ms stoppressedtime:");
//Serial.print(radio_data.topbuttonpressedtime);
//Serial.print("ms offset counter value :");
//Serial.print(radio_data.topstationtime_us);
//Serial.print("us stoppressedtime:");
//Serial.print(radio_data.topbuttonpressedtime_us);
//Serial.print("us offset counter value :");
//Serial.println(counter_time_offset);
// send data ...
if (!radio.write(&radio_data,sizeof(radio_data))){ // Send the counter variable to the other radio
if(((millis() - connection_last_established_at_ms) >= (CONN_TIMEOUT-100))){
if(((millis() - connection_last_established_at_ms) >= (CONN_TIMEOUT_MS-100))){
connection_available = false;
//Serial.println("Failed to send data to BASESSTATION ... will retry");
} else {
@ -822,7 +923,7 @@ void send_values(void){
connection_last_established_at_ms = millis();
connection_available = true;
// check offset sync counter ...
if(counter_time_offset < (4*REQUIRED_NUMBER_MEANVALS)){
if(counter_time_offset < (2*REQUIRED_NUMBER_MEANVALS)){
counter_time_offset++;
} else {
// offset sync done
@ -833,4 +934,12 @@ void send_values(void){
}
}
String micros2string(signed long microsecs){
char buf[32] = "";
String bufstring;
sprintf(buf, "%032d", microsecs);
sprintf(buf, "%c%c:%c%c%c", buf[24],buf[25],buf[26],buf[27],buf[28]);
bufstring = (String)buf;
return bufstring;
}