last changes

This commit is contained in:
Fenoglio 2018-09-12 16:35:48 +02:00
parent 75be491f28
commit 8b9fcc31c2
4 changed files with 349 additions and 234 deletions

Binary file not shown.

BIN
server_client.pptx Normal file

Binary file not shown.

View file

@ -9,6 +9,7 @@
#define STATION_SEL1 10 // this 10 for Nano #define STATION_SEL1 10 // this 10 for Nano
typedef enum {BASESTATION = 0, TOPSTATION} radio_type_e; typedef enum {BASESTATION = 0, TOPSTATION} radio_type_e;
#define RF24_IRQ 2 // this is 2 for the Nano, ?? for the ESP
#define RF24_CNS 7 // this is 7 for the Nano, D4 for the ESP #define RF24_CNS 7 // this is 7 for the Nano, D4 for the ESP
#define RF24_CE 8 // this is 8 for the Nano, D3 for the ESP #define RF24_CE 8 // this is 8 for the Nano, D3 for the ESP
#define RF24_PA_LEVEL RF24_PA_LOW // sending power level RF24_PA_LOW, RF24_PA_HIGH???? #define RF24_PA_LEVEL RF24_PA_LOW // sending power level RF24_PA_LOW, RF24_PA_HIGH????
@ -20,12 +21,13 @@ typedef enum {BASESTATION = 0, TOPSTATION} radio_type_e;
//--------------- define the structure and type of data that sender and receiver will exchange ---------------- //--------------- define the structure and type of data that sender and receiver will exchange ----------------
typedef struct transcv_struct{ typedef struct transcv_struct{
unsigned long topstationtime; // the top station sends its time (millis()) continously to the base station volatile unsigned long topstationtime_us; // the top station sends its time (micros()) continously to the base station
volatile unsigned long topbuttonpressedtime; // the top station sends the time in millis() when the button was pressed - this is already the calculated time volatile unsigned long topbuttonpressedtime_us; // the top station sends the time in millis() when the button was pressed - this is already the calculated time
}transcv_s; }transcv_s;
#define MIN_DELAY_BETWEEN_SEND_MS 1000 // this defines the time in milliseconds before the next set of data will be send to the base station - except the button was pressed. #define MAX_DELAY_BETWEEN_SEND_US 1000000 // this defines the time in micro seconds before the next set of data will be send to the base station - except the button was pressed.
#define CONN_TIMEOUT 5000 // if there was no data received from the TOPSTATION for that amount of time - the connection is flagged as lost #define MIN_DELAY_BETWEEN_SEND_US 50000 // this defines the time in micro seconds before the next set of data will be send to the base station when the button was pressed or in initsequnce
#define CONN_TIMEOUT_MS 5000 // if there was no data received from the TOPSTATION for that amount of time - the connection is flagged as lost
#define KEY_BOUNCE_MS 50 // the time we use to avoid keybouncing ... #define KEY_BOUNCE_MS 50 // the time we use to avoid keybouncing ...
#define KEY_LONGPRESSED_MS 1000 #define KEY_LONGPRESSED_MS 1000
@ -33,14 +35,15 @@ typedef struct transcv_struct{
#define BUTTON_NOTPRESSED HIGH #define BUTTON_NOTPRESSED HIGH
#define BUTTON_PRESSED LOW #define BUTTON_PRESSED LOW
#define BUTTON_LONGPRESSED 3 #define BUTTON_LONGPRESSED 3
typedef enum {BUTTON_STOPCANCEL = 0, BUTTON_START, BUTTON_FAIL,NO_LAST_BUTTON} button_number_e; typedef enum {BUTTON_STOP = 0, BUTTON_CANCEL, BUTTON_START, BUTTON_FAIL,NO_LAST_BUTTON} button_number_e;
const uint8_t BUTTONPins[NO_LAST_BUTTON] = { const uint8_t BUTTONPins[NO_LAST_BUTTON] = {
[BUTTON_STOPCANCEL] = 2, // stop/cancel button input pin [BUTTON_STOP] = 2, // stop button input pin
[BUTTON_CANCEL] = 5, // cancel button input pin
[BUTTON_START] = 4, // start button input pin [BUTTON_START] = 4, // start button input pin
[BUTTON_FAIL] = 3, // stop button input pin [BUTTON_FAIL] = 3, // stop button input pin
}; };
#define MIN_DELAY_BETWEEN_PRESSED_MS 500 // this defines the time in milliseconds before the button is expected to be pressed again. We do this to avaoid keybouncing #define MIN_DELAY_BETWEEN_PRESSED_US 500000 // this defines the time in microseconds before the button is expected to be pressed again. We do this to avaoid keybouncing
#define PIEZO_PIN 6 // piezo speaker #define PIEZO_PIN 6 // piezo speaker
@ -77,26 +80,26 @@ const uint8_t LEDStates[][NO_LAST_LED] =
[TIMER_SETTINGS] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_ON} // 11 [TIMER_SETTINGS] = {[READY_LED]=LED_OFF, [RUN_LED]=LED_OFF, [FAIL_LED]=LED_OFF, [WARN_LED]=LED_ON} // 11
}; };
#define MAX_DIFFERENCE_OFFSET_MS 100 // 0,001sec is the maximum offset we allow between the current offset and the mean offset. if it is more - restart offset calculation #define MAX_DIFFERENCE_OFFSET_US 100000 // 0,001sec is the maximum offset we allow between the current offset and the mean offset. if it is more - restart offset calculation
#define REQUIRED_NUMBER_MEANVALS 100 // we need at least this number of meanvalues to be ready to start a run #define REQUIRED_NUMBER_MEANVALS 1 // we need at least this number of meanvalues to be ready to start a run
#define MAX_ALLOWED_FAILED_OFFSETS 10 // if more than this number of offsets are out of the specified MAX_DIFFERENCE_OFFSET_MS value, offset calcultion will be restarted #define MAX_ALLOWED_FAILED_OFFSETS 10 // if more than this number of offsets are out of the specified MAX_DIFFERENCE_OFFSET_MS value, offset calcultion will be restarted
#define STARTSEQ_STEPS 4 #define STARTSEQ_STEPS 4
const uint8_t STARTSEQ_NOTES[] = {0,392,392,1047}; // tone frequence const uint8_t STARTSEQ_NOTES[] = {0,392,392,1047}; // tone frequence
const uint16_t STARTSEQ_DURATION[] = {0,200,200,100}; // tone duration in milliseconds const uint16_t STARTSEQ_DURATION_MS[] = {0,200,200,100}; // tone duration in milliseconds
const unsigned long STARTSEQ_PAUSE[] = {1000000,1000000,1000000,100000}; // pause between tones in microseconds const unsigned long STARTSEQ_PAUSE_US[] = {1000000,1000000,1000000,100000}; // pause between tones in microseconds
#define STARTSEQ_LENGTH_MS 3100 // the length of the start sequence from the time the button was pressed ... includes the 3 tones #define STARTSEQ_LENGTH_US 3100000 // the length of the start sequence from the time the button was pressed ... includes the 3 tones
#define FAILSEQ_STEPS 2 #define FAILSEQ_STEPS 2
const uint8_t FAILSEQ_NOTES[] = {49,49}; // tone frequence const uint8_t FAILSEQ_NOTES[] = {49,49}; // tone frequence
const uint16_t FAILSEQ_DURATION[] = {300,300}; // tone duration in milliseconds const uint16_t FAILSEQ_DURATION_MS[] = {300,300}; // tone duration in milliseconds
const unsigned long FAILSEQ_PAUSE[] = {400000,400000}; // pause between tones in microseconds const unsigned long FAILSEQ_PAUSE_US[] = {400000,400000}; // pause between tones in microseconds
#define TIMER_MAX_TIME 99999 #define TIMER_MAX_TIME_US 99999999
#define TIMER_TIMEOUT 20000 #define TIMER_TIMEOUT_US 20000000
//--------------------------------------- function declarations ---------------------------------------------- //--------------------------------------- function declarations ----------------------------------------------
void receive_values(void); void update_offset_values(void);
void false_start_isr(void); void false_start_isr(void);
void update_screen(timer_state_e state); void update_screen(timer_state_e state);
void set_state_LEDs(timer_state_e state, boolean warn); void set_state_LEDs(timer_state_e state, boolean warn);
@ -108,5 +111,8 @@ void start_isr(void);
void update_buttons(void); void update_buttons(void);
void send_values(void); void send_values(void);
void stop_isr(void); void stop_isr(void);
String micros2string(signed long microsecs);
void nrf24_isr(void);
void handle_connection(void);
signed long calc_mean_offset(signed long current_toptime);
#endif #endif

View file

@ -17,28 +17,40 @@ RF24 radio(RF24_CNS,RF24_CE);
/**********************************************************/ /**********************************************************/
byte addresses[][12] = {"top_station","basestation"}; // Radio pipe addresses for the 2 nodes to communicate. byte addresses[][12] = {"top_station","basestation"}; // Radio pipe addresses for the 2 nodes to communicate.
unsigned long stats_last_plotted = 0; unsigned long stats_last_plotted_at_ms = 0;
unsigned long startloop_ms = 0; unsigned long startloop_ms = 0;
boolean offset_sync_sequence = true; // set to true as the offset sync / calibration is not done - sending data to the basestation is more often as after the sync is done ... boolean offset_sync_sequence = true; // set to true as the offset sync / calibration is not done - sending data to the basestation is more often as after the sync is done ...
boolean blink_on = false; // set to TRUE if the system clock cycle signals to set LEDs in LED_BLINK mode to be active - means top be switched on boolean blink_on = false; // set to TRUE if the system clock cycle signals to set LEDs in LED_BLINK mode to be active - means top be switched on
unsigned long blink_on_swiched_at = 0; // the last system time (in milliseconds) the blink_on was switched unsigned long blink_on_swiched_at_ms = 0; // the last system time (in milliseconds) the blink_on was switched
uint8_t *leds_states = LEDStates[TIMER_INIT]; uint8_t *leds_states = LEDStates[TIMER_INIT];
boolean time_offset_ok = false; // true as long as the offset is correctly calculated boolean time_offset_ok = false; // true as long as the offset is correctly calculated
volatile boolean new_current_offset_available = false;
uint16_t counter_time_offset = 0; // number of used values for the mean value calculation uint16_t counter_time_offset = 0; // number of used values for the mean value calculation
signed long sum_time_offset = 0; // sum of offset values
signed long current_time_offset = 0; // current offset ... signed long long sum_time_offset_us = 0; // sum of offset values
signed long mean_time_offset = 0; // mean value for the offset float sum_time_slope = 0; // sum of slopes
signed long running_time_offset = 0; // offset that will be used for this run ...
volatile unsigned long start_time = 0; // if the timer is running this is that start time ... (use volatile for all shared variables that deals with hardware) volatile unsigned long last_top_time_us = 0; // current top time ...
volatile unsigned long runner_start_time = 0; // this is the time the runner left the pad - so the status of the falsetstart pin goes to high again - but this is OK and a real start (use volatile for all shared variables that deals with hardware) volatile unsigned long current_top_time_us = 0; // current top time ...
unsigned long run_time = 0; // if the timer is running this is that start time ... volatile unsigned long last_bottom_time_us = 0; // current top time ...
volatile unsigned long current_bottom_time_us = 0; // current top time ...
volatile signed long current_time_offset_us = 0; // current offset ...
signed long mean_time_offset_us = 0; // mean value for the offset (we have an linear sync function to map the TOPSTATION time to BOTTOMSTATIONTIME : t
float mean_time_slope = 0; // mean slope
signed long running_time_offset_us = 0; // offset that will be used for this run ...
volatile unsigned long start_time_us = 0; // if the timer is running this is that start time ... (use volatile for all shared variables that deals with hardware)
volatile unsigned long runner_start_time_us = 0; // this is the time the runner left the pad - so the status of the falsetstart pin goes to high again - but this is OK and a real start (use volatile for all shared variables that deals with hardware)
unsigned long run_time_us = 0; // if the timer is running this is that start time ...
boolean warn_during_run = false; // will be set to true if there is a warning during the run - usually an offset sync error boolean warn_during_run = false; // will be set to true if there is a warning during the run - usually an offset sync error
unsigned long connection_last_established_at_ms = 0; // time the last active connection was established volatile unsigned long connection_last_established_at_ms = 0; // time the last active connection was established
boolean connection_available = false; // if there were no data for longer then CONN_TIMEOUT the connection will be flaged as lost ... volatile boolean connection_available = false; // if there were no data for longer then CONN_TIMEOUT the connection will be flaged as lost ...
boolean keep_connection_off = true; // if sett to true the connection to the top station will be kept off for a timeout time to signal that we are in the init sequnce again ... boolean keep_connection_off = true; // if sett to true the connection to the top station will be kept off for a timeout time to signal that we are in the init sequnce again ...
uint8_t failed_offsets = MAX_ALLOWED_FAILED_OFFSETS; // number of offset values that did not fullfill the MAX_DIFFERENCE_OFFSET_MS criterion uint8_t failed_offsets = MAX_ALLOWED_FAILED_OFFSETS; // number of offset values that did not fullfill the MAX_DIFFERENCE_OFFSET_MS criterion
volatile boolean false_start = false; // set to true if a false start occurs (use volatile for all shared variables that deals with hardware) volatile boolean false_start = false; // set to true if a false start occurs (use volatile for all shared variables that deals with hardware)
@ -50,14 +62,14 @@ volatile uint8_t failsequence_count = 0;
boolean topbuttonwaspressed = false; // set to true if the stop button was pressed boolean topbuttonwaspressed = false; // set to true if the stop button was pressed
uint8_t button_state[NO_LAST_BUTTON] = {BUTTON_NOTPRESSED}; uint8_t button_state[NO_LAST_BUTTON] = {BUTTON_NOTPRESSED};
unsigned long button_last_changed_at[NO_LAST_BUTTON] = {0}; unsigned long button_last_changed_at_ms[NO_LAST_BUTTON] = {0};
uint8_t button_last_changed_to[NO_LAST_BUTTON] = {BUTTON_NOTPRESSED}; uint8_t button_last_changed_to[NO_LAST_BUTTON] = {BUTTON_NOTPRESSED};
timer_state_e timer_state = TIMER_INIT; // current state needs to be initialized to somethin different then new_state due to the fact that some pieces of the code check for differnt values of state and _new_state to detect an update... timer_state_e timer_state = TIMER_INIT; // current state needs to be initialized to somethin different then new_state due to the fact that some pieces of the code check for differnt values of state and _new_state to detect an update...
timer_state_e timer_new_state = TIMER_NOCONNECTION; // next state - in the startup phase the first state - will be TIMER_NOCONNECTION ... checking if a connection to TOPSTATION is established timer_state_e timer_new_state = TIMER_NOCONNECTION; // next state - in the startup phase the first state - will be TIMER_NOCONNECTION ... checking if a connection to TOPSTATION is established
timer_mode_e timer_mode = MODE_COMPETE; // mode of the BASESTATION - this can be changed in IDLE state by pressing the CANCEL button timer_mode_e timer_mode = MODE_COMPETE; // mode of the BASESTATION - this can be changed in IDLE state by pressing the CANCEL button
unsigned long timer_mode_changed_at = 0; unsigned long timer_mode_changed_at_ms = 0;
transcv_s radio_data; transcv_s radio_data;
void setup(){ void setup(){
@ -92,10 +104,10 @@ void setup(){
// Setup and configure the NRF radio // Setup and configure the NRF radio
// radio setup ... // radio setup ...
radio.begin(); radio.begin();
radio.setRetries(15, 15); //the first is the time between reties in multiple of 250ms, the second is the numer of attempts radio.setRetries(1, 1); //the first is the time between reties in multiple of 250ms, the second is the numer of attempts
if(stationNumber == TOPSTATION){ if(stationNumber == TOPSTATION){
// Attach the STOP button interrupt // Attach the STOP button interrupt
attachInterrupt(digitalPinToInterrupt(BUTTONPins[BUTTON_STOPCANCEL]), stop_isr, FALLING ); attachInterrupt(digitalPinToInterrupt(BUTTONPins[BUTTON_STOP]), stop_isr, FALLING );
// Set the PA Level of the sendin TOP_STATION // Set the PA Level of the sendin TOP_STATION
radio.setPALevel(RF24_PA_LEVEL); radio.setPALevel(RF24_PA_LEVEL);
radio.openWritingPipe(addresses[1]); // Both radios listen on the same pipes by default, but opposite addresses radio.openWritingPipe(addresses[1]); // Both radios listen on the same pipes by default, but opposite addresses
@ -106,8 +118,8 @@ void setup(){
radio.openReadingPipe(1,addresses[1]); radio.openReadingPipe(1,addresses[1]);
radio.startListening(); radio.startListening();
} }
radio_data.topstationtime = millis(); // set the current milli second count radio_data.topstationtime_us = micros(); // set the current micro second count
radio_data.topbuttonpressedtime = 0; // set the time the button was pressed last time to 0 radio_data.topbuttonpressedtime_us = 0; // set the time the button was pressed last time to 0
//initialise Wire and OLED //initialise Wire and OLED
Wire.begin(); Wire.begin();
@ -121,8 +133,8 @@ void loop(void) {
/****************** Shared code for all stations ********************************************************************************/ /****************** Shared code for all stations ********************************************************************************/
startloop_ms = millis(); startloop_ms = millis();
if(millis() - blink_on_swiched_at > LED_BLINK_ALL_MS){ if(millis() - blink_on_swiched_at_ms > LED_BLINK_ALL_MS){
blink_on_swiched_at = millis(); blink_on_swiched_at_ms = millis();
blink_on = !blink_on; blink_on = !blink_on;
} }
@ -165,7 +177,7 @@ void loop(void) {
timer_new_state = TIMER_NOCONNECTION; timer_new_state = TIMER_NOCONNECTION;
} else { } else {
if(false == offset_sync_sequence){ if(false == offset_sync_sequence){
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){ if(button_state[BUTTON_STOP] == BUTTON_NOTPRESSED){
topbuttonwaspressed = false; topbuttonwaspressed = false;
timer_new_state = TIMER_IDLE; timer_new_state = TIMER_IDLE;
} }
@ -184,8 +196,8 @@ void loop(void) {
break; break;
case TIMER_STOPPED: case TIMER_STOPPED:
// wait a few millis and ... after that go back to idle ... // wait a few millis and ... after that go back to idle ...
if((signed long)(millis() - radio_data.topbuttonpressedtime) > MIN_DELAY_BETWEEN_PRESSED_MS){ if((signed long)(micros() - radio_data.topbuttonpressedtime_us) > MIN_DELAY_BETWEEN_PRESSED_US){
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){ if(button_state[BUTTON_STOP] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_IDLE; timer_new_state = TIMER_IDLE;
topbuttonwaspressed = false; topbuttonwaspressed = false;
} }
@ -198,8 +210,11 @@ void loop(void) {
/****************** Code for the BASESTATION is here - the display and the start button is connected here. All caclulation will be done here ***************************/ /****************** Code for the BASESTATION is here - the display and the start button is connected here. All caclulation will be done here ***************************/
if ( stationNumber == BASESTATION ) { if ( stationNumber == BASESTATION ) {
// receive data from top_station, calculate offset and set 'last connection' time stamp // update connection status
receive_values(); handle_connection();
// calculate offset and set 'last connection' time stamp
//update_offset_values();
// update the OLED screen // update the OLED screen
update_screen(timer_new_state); update_screen(timer_new_state);
@ -225,7 +240,7 @@ void loop(void) {
else{ else{
// if the offset is claculated, cancel not pressed and failstart not pressed switch to IDLE mode ... // if the offset is claculated, cancel not pressed and failstart not pressed switch to IDLE mode ...
if((time_offset_ok == true) && if((time_offset_ok == true) &&
(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED) && (button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED) ) (button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED) )
{ {
// check if offset is OK - if not .. set state back to INIT // check if offset is OK - if not .. set state back to INIT
@ -250,11 +265,11 @@ void loop(void) {
// check if the FALSESTATE button is pressed OR we are in trainingsmode - somebody is ready to run, but STARTBUTTON is NOT pressed ... // check if the FALSESTATE button is pressed OR we are in trainingsmode - somebody is ready to run, but STARTBUTTON is NOT pressed ...
if(((button_state[BUTTON_FAIL] != BUTTON_NOTPRESSED) || (timer_mode != MODE_COMPETE)) && if(((button_state[BUTTON_FAIL] != BUTTON_NOTPRESSED) || (timer_mode != MODE_COMPETE)) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) && (button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED)) (button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED))
{ {
timer_new_state = TIMER_READY; timer_new_state = TIMER_READY;
} else { } else {
if((button_state[BUTTON_STOPCANCEL] == BUTTON_LONGPRESSED) && if((button_state[BUTTON_CANCEL] == BUTTON_LONGPRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) && (button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED)) (button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED))
{ {
@ -277,7 +292,7 @@ void loop(void) {
// now enable the interrupt for the FALSESTART button // now enable the interrupt for the FALSESTART button
startsequence_count = 0; startsequence_count = 0;
startsequence_done = false; startsequence_done = false;
running_time_offset = mean_time_offset; running_time_offset_us = mean_time_offset_us;
false_start = false; false_start = false;
if(timer_mode == MODE_COMPETE){ if(timer_mode == MODE_COMPETE){
attachInterrupt(digitalPinToInterrupt(BUTTONPins[BUTTON_FAIL]), false_start_isr, RISING ); attachInterrupt(digitalPinToInterrupt(BUTTONPins[BUTTON_FAIL]), false_start_isr, RISING );
@ -285,11 +300,11 @@ void loop(void) {
Timer1.initialize(); Timer1.initialize();
timer_new_state = TIMER_STARTED; timer_new_state = TIMER_STARTED;
// set the startime - this is the current time plus the length of this sequence // set the startime - this is the current time plus the length of this sequence
start_time = millis() + STARTSEQ_LENGTH_MS; start_time_us = micros() + STARTSEQ_LENGTH_US;
// call the start sequence interrupt routine ... // call the start sequence interrupt routine ...
Timer1.attachInterrupt(start_isr,STARTSEQ_PAUSE[startsequence_count]); // startISR to run every given microseconds Timer1.attachInterrupt(start_isr,STARTSEQ_PAUSE_US[startsequence_count]); // startISR to run every given microseconds
} else { } else {
if((button_state[BUTTON_STOPCANCEL] == BUTTON_LONGPRESSED) && if((button_state[BUTTON_CANCEL] == BUTTON_LONGPRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) && (button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED)) (button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED))
{ {
@ -306,7 +321,7 @@ void loop(void) {
failsequence_done = false; failsequence_done = false;
failsequence_count = 0; failsequence_count = 0;
timer_new_state = TIMER_FAIL; timer_new_state = TIMER_FAIL;
Timer1.attachInterrupt(failSequence,FAILSEQ_PAUSE[failsequence_count]); Timer1.attachInterrupt(failSequence,FAILSEQ_PAUSE_US[failsequence_count]);
} else { } else {
if(startsequence_done == true){ if(startsequence_done == true){
timer_new_state = TIMER_RUNNING; timer_new_state = TIMER_RUNNING;
@ -318,15 +333,15 @@ void loop(void) {
// check if offset is still OK - if not .. set warning // check if offset is still OK - if not .. set warning
warn_during_run = true; warn_during_run = true;
} }
if((signed long)(millis() - start_time) > TIMER_TIMEOUT){ if((signed long)(micros() - start_time_us) > TIMER_TIMEOUT_US){
timer_new_state = TIMER_TIMEDOUT; timer_new_state = TIMER_TIMEDOUT;
} else { } else {
if(button_state[BUTTON_STOPCANCEL] != BUTTON_NOTPRESSED){ if(button_state[BUTTON_CANCEL] != BUTTON_NOTPRESSED){
timer_new_state = TIMER_CANCELLED; timer_new_state = TIMER_CANCELLED;
} else { } else {
if(radio_data.topbuttonpressedtime > running_time_offset){ if(radio_data.topbuttonpressedtime_us > running_time_offset_us){
if((radio_data.topbuttonpressedtime - running_time_offset) > start_time){ if((signed long)(radio_data.topbuttonpressedtime_us - running_time_offset_us) > start_time_us){
run_time = (radio_data.topbuttonpressedtime - running_time_offset) - start_time; run_time_us = (radio_data.topbuttonpressedtime_us - running_time_offset_us) - start_time_us;
timer_new_state = TIMER_STOPPED; timer_new_state = TIMER_STOPPED;
} }
} }
@ -335,39 +350,36 @@ void loop(void) {
break; break;
case TIMER_STOPPED: case TIMER_STOPPED:
//calculate the run_time and switch to WAIT //calculate the run_time and switch to WAIT
delay(KEY_BOUNCE_MS); if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT; timer_new_state = TIMER_WAIT;
} }
break; break;
case TIMER_FAIL: case TIMER_FAIL:
//fail start case .... //fail start case ....
run_time = 99999; run_time_us = TIMER_MAX_TIME_US;
if(true == failsequence_done){ if(true == failsequence_done){
delay(KEY_BOUNCE_MS); if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT; timer_new_state = TIMER_WAIT;
} }
} }
break; break;
case TIMER_CANCELLED: case TIMER_CANCELLED:
// what to do in chancel mode ? // what to do in chancel mode ?
run_time = 99999; run_time_us = TIMER_MAX_TIME_US;
delay(KEY_BOUNCE_MS); if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT; timer_new_state = TIMER_WAIT;
} }
break; break;
case TIMER_TIMEDOUT: case TIMER_TIMEDOUT:
// time out // time out
run_time = millis() - start_time; run_time_us = micros() - start_time_us;
if(button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED){ if(button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED){
timer_new_state = TIMER_WAIT; timer_new_state = TIMER_WAIT;
} }
break; break;
case TIMER_WAIT: case TIMER_WAIT:
// wait until the chancel button was pressed to go ahead // wait until the chancel button was pressed to go ahead
if((button_state[BUTTON_STOPCANCEL] != BUTTON_NOTPRESSED) && if((button_state[BUTTON_CANCEL] != BUTTON_NOTPRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED) && (button_state[BUTTON_START] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED) (button_state[BUTTON_FAIL] == BUTTON_NOTPRESSED)
) )
@ -377,16 +389,16 @@ void loop(void) {
break; break;
case TIMER_SETTINGS: case TIMER_SETTINGS:
// switch between the different modes for now - compete, training and calibration ... // switch between the different modes for now - compete, training and calibration ...
if((button_state[BUTTON_STOPCANCEL] == BUTTON_PRESSED) && if((button_state[BUTTON_CANCEL] == BUTTON_PRESSED) &&
(button_state[BUTTON_START] == BUTTON_NOTPRESSED)) (button_state[BUTTON_START] == BUTTON_NOTPRESSED))
{ {
// go back to idle // go back to idle
timer_new_state = TIMER_IDLE; timer_new_state = TIMER_IDLE;
} else { } else {
if((button_state[BUTTON_STOPCANCEL] == BUTTON_NOTPRESSED) && if((button_state[BUTTON_CANCEL] == BUTTON_NOTPRESSED) &&
(button_state[BUTTON_START] == BUTTON_PRESSED)) (button_state[BUTTON_START] == BUTTON_PRESSED))
{ {
if((millis() - timer_mode_changed_at) > KEY_TOGGLE_MS){ if((millis() - timer_mode_changed_at_ms) > KEY_TOGGLE_MS){
// switch system mode ... // switch system mode ...
switch(timer_mode){ switch(timer_mode){
case MODE_COMPETE: case MODE_COMPETE:
@ -399,7 +411,7 @@ void loop(void) {
timer_mode = MODE_COMPETE; timer_mode = MODE_COMPETE;
break; break;
} }
timer_mode_changed_at = millis(); timer_mode_changed_at_ms = millis();
} }
} }
@ -408,21 +420,68 @@ void loop(void) {
} }
} }
/*
// ignore the first seconds ...
if(time_offset_ok == true){
if( (STATS_PLOTS_EVERY_MS > 0) && if( (STATS_PLOTS_EVERY_MS > 0) &&
((millis() -stats_last_plotted) > STATS_PLOTS_EVERY_MS)) ((signed long)(millis() -stats_last_plotted_at_ms) > STATS_PLOTS_EVERY_MS))
{ {
Serial.println("mean_time_offset-current_time_offset"); //Serial.println("mean_time_offset-current_time_offset");
Serial.print((signed long)(mean_time_offset - current_time_offset)); //Serial.println(calc_mean_offset(current_top_time_us));
//Serial.print(" "); //Serial.print(" ");
//Serial.println(millis()- startloop_ms); //Serial.print(mean_time_offset_us);
stats_last_plotted = millis(); //Serial.print(" ");
//Serial.println(current_time_offset_us);
stats_last_plotted_at_ms = millis();
} }
} }
*/
}
//####################### HELPER FUNCTIONS ########################### //####################### HELPER FUNCTIONS ###########################
signed long calc_top2bot_time(signed long current_toptime){
return((mean_time_slope*current_toptime) + mean_time_offset_us);
}
void nrf24_isr(void)
{
//Serial.println("Got data from TOPSTATION");
bool tx,fail,rx;
// wait the connection time out time before receiving data - this is to tell the TOP_STATION to resend offset values in fast mode ...
if(keep_connection_off == false){
radio.whatHappened(tx,fail,rx); // What happened?
if ( rx ){
// check if radio data is available - if so read the data
// read data from TOP_STATION ...
//while( radio.available()){ // Read all available payloads
radio.read( &radio_data, sizeof(radio_data) ); // Read the data the TOPSTATION sent
//}
if(new_current_offset_available == false){
last_top_time_us = current_top_time_us;
current_top_time_us = radio_data.topstationtime_us;
last_bottom_time_us = current_bottom_time_us;
current_bottom_time_us = micros();
//new_current_offset_available = true;
Serial.print(" last_top_time_us:");
Serial.print(last_top_time_us);
Serial.print(" current_top_time_us:");
Serial.print(current_top_time_us);
Serial.print(" last_bottom_time_us.");
Serial.print(last_bottom_time_us);
Serial.print(" current_bottom_time_us:");
Serial.println(current_bottom_time_us);
Serial.print("current offset:");
Serial.println((signed long)(current_top_time_us - current_bottom_time_us));
}
connection_last_established_at_ms = millis();
connection_available = true;
}
}
}
void update_buttons(void){ void update_buttons(void){
uint8_t curr_button_state; uint8_t curr_button_state;
unsigned long button_pressed_at = millis(); unsigned long button_pressed_at_ms = millis();
String state_string; String state_string;
// we have some buttons to update that are used in the sketch ... // we have some buttons to update that are used in the sketch ...
for(uint8_t button = 0; button < NO_LAST_BUTTON; button++){ for(uint8_t button = 0; button < NO_LAST_BUTTON; button++){
@ -435,7 +494,7 @@ void update_buttons(void){
curr_button_state = BUTTON_PRESSED; curr_button_state = BUTTON_PRESSED;
} }
if( curr_button_state != button_last_changed_to[button] ){ if( curr_button_state != button_last_changed_to[button] ){
button_last_changed_at[button] = button_pressed_at; button_last_changed_at_ms[button] = button_pressed_at_ms;
button_last_changed_to[button] = curr_button_state; button_last_changed_to[button] = curr_button_state;
} }
@ -443,7 +502,7 @@ void update_buttons(void){
((curr_button_state == BUTTON_PRESSED) && (button_state[button] == BUTTON_NOTPRESSED))) // the button has changed its state ((curr_button_state == BUTTON_PRESSED) && (button_state[button] == BUTTON_NOTPRESSED))) // the button has changed its state
{ {
// is that bouncing or settled? // is that bouncing or settled?
if((unsigned long)(button_pressed_at - button_last_changed_at[button]) > KEY_BOUNCE_MS){ if((unsigned long)(button_pressed_at_ms - button_last_changed_at_ms[button]) > KEY_BOUNCE_MS){
// settled! -> change the stored state. // settled! -> change the stored state.
button_state[button] = curr_button_state; button_state[button] = curr_button_state;
} else { } else {
@ -453,7 +512,7 @@ void update_buttons(void){
(button_state[button] == BUTTON_PRESSED)) (button_state[button] == BUTTON_PRESSED))
{ {
//check for long pressed button ... //check for long pressed button ...
if((unsigned long)(button_pressed_at - button_last_changed_at[button]) > KEY_LONGPRESSED_MS){ if((unsigned long)(button_pressed_at_ms - button_last_changed_at_ms[button]) > KEY_LONGPRESSED_MS){
button_state[button] = BUTTON_LONGPRESSED; button_state[button] = BUTTON_LONGPRESSED;
} }
} }
@ -461,61 +520,105 @@ void update_buttons(void){
} }
} }
void receive_values(void){ void handle_connection(void){
// wait the connection time out time before receiving data - this is to tell the TOP_STATION to resend offset values in fast mode ... if(keep_connection_off == true){
if(keep_connection_off){ // Attach the RF24 IRQ pin interrupt
if((millis() - connection_last_established_at_ms) > (2*CONN_TIMEOUT)){ detachInterrupt(digitalPinToInterrupt(RF24_IRQ));
connection_available = false;
if((millis() - connection_last_established_at_ms) > (2*CONN_TIMEOUT_MS)){
keep_connection_off = false; keep_connection_off = false;
//Serial.print("Connection ON allowed."); // Attach the RF24 IRQ pin interrupt
attachInterrupt(digitalPinToInterrupt(RF24_IRQ), nrf24_isr, LOW );
}
} else { } else {
//Serial.print("Connection OFF forced."); // remove the RF24 connection flag if no data was received for longer time
if((millis() - connection_last_established_at_ms >= CONN_TIMEOUT_MS) || (connection_last_established_at_ms == 0)){
connection_available = false;
Serial.println("ERROR: No connection established to TOPSTATION");
} // radio available
} // keep connection off
} }
} else
{
// check if radio data is available - if so read the data
if( radio.available()){
// read data from TOP_STATION ...
while( radio.available()){ // Read all available payloads
radio.read( &radio_data, sizeof(radio_data) ); // Read the data the TOPSTATION sent
}
connection_last_established_at_ms = millis();
connection_available = true;
current_time_offset = radio_data.topstationtime - millis(); // the offset between TOP_STATION and BASESTATION
/*
Serial.print("Current time on host in millis:");
Serial.print(millis());
Serial.print(" Current time on client in millis: ");
Serial.println(radio_data.topstationtime);
Serial.print("Offset is: ");
Serial.println(current_time_offset);
Serial.print(" Button was pressed last time on client in millis: ");
Serial.println(radio_data.topbuttonpressedtime);
*/
// offset calculation ... only needed if the variation is bigger than allowed or not enough values available already ... void update_offset_values(void){
float int_time_slope = 1.0;
signed long int_time_delta_x = 0;
signed long int_time_delta_y = 0;
signed long int_time_offset_us = 0;
unsigned long int_current_bot_time_us = 0;
unsigned long int_calc_bot_time_us = 0;
unsigned long int_current_top_time_us = 0;
signed long int_current_calc2real_offset = 0;
if((new_current_offset_available == true) && // there is a new value
(last_top_time_us != 0) && // the last top time is updated already
(current_top_time_us != 0) && // the current top time is updated
(last_bottom_time_us != 0) && // the last bottom time is updated
(current_bottom_time_us != 0)) // the current bottom time is updated
{
//calculate the last and the current offset based on what we got from Topstation
int_current_bot_time_us = current_bottom_time_us;
int_time_delta_y = current_bottom_time_us-last_bottom_time_us;
int_time_delta_x = current_top_time_us-last_top_time_us;
new_current_offset_available = false;
if(counter_time_offset == 0){ if(counter_time_offset == 0){
// this is the initial setup to start with something - in this case the last offset value that was received // this is the initial setup to start with something - in this case the last offset value that was received
mean_time_offset = current_time_offset; int_current_calc2real_offset = 0;
} else {
int_calc_bot_time_us = calc_top2bot_time(current_top_time_us);
int_current_calc2real_offset = int_calc_bot_time_us - int_current_bot_time_us;
//Serial.print("Counter:");
//Serial.println(counter_time_offset);
//Serial.print("Calculated bot time:");
//Serial.println(int_calc_bot_time_us);
//Serial.print("Real bot time:");
//Serial.println(int_current_bot_time_us);
Serial.print("So offset between calc and Real bot time:");
Serial.println(abs(int_current_calc2real_offset));
// Serial.print("function offset:");
//Serial.println(mean_time_offset_us);
//Serial.print("function slope:");
//Serial.println((float)mean_time_slope);
} }
// check current offset of the TOP_STATIOn and the BASESTATION if more than allowed ... // check current offset of the TOP_STATIOn and the BASESTATION if more than allowed ...
if(abs(current_time_offset - mean_time_offset) < MAX_DIFFERENCE_OFFSET_MS){
if(abs(int_current_calc2real_offset) < MAX_DIFFERENCE_OFFSET_US){
// if the current value is in range - decrease the fail counter by 1 if it was not zero already // if the current value is in range - decrease the fail counter by 1 if it was not zero already
if(failed_offsets > 0){ if(failed_offsets > 0){
//Serial.println("INFO: The last received TOPSTATION offset time stamp was again in range. Decrease internal fail counter"); Serial.println("INFO: The last received TOPSTATION offset time stamp was again in range. Decrease internal fail counter");
failed_offsets--; failed_offsets--;
} }
// the offset is in range - check if we have already enough values of if we need to add more ... // the offset is in range - check if we have already enough values of if we need to add more ...
if(counter_time_offset <= REQUIRED_NUMBER_MEANVALS){ if(counter_time_offset <= REQUIRED_NUMBER_MEANVALS){
//add the next value to meanvalue calculation ... //add the next value to meanvalue calculation ...
sum_time_offset = sum_time_offset + current_time_offset; int_time_slope = (float)(int_time_delta_y / int_time_delta_x);
int_time_offset_us = current_bottom_time_us - (int_time_slope*current_top_time_us);
//Serial.print(" offset is: ");
//Serial.print(int_time_offset_us);
//Serial.print(" int_time_delta_y:");
//Serial.print(int_time_delta_y);
//Serial.print(" int_time_delta_x:");
//Serial.print(int_time_delta_x);
//Serial.print(" int_time_slope:");
//Serial.println(int_time_slope);
sum_time_offset_us = sum_time_offset_us + int_time_offset_us;
sum_time_slope = sum_time_slope + int_time_slope;
counter_time_offset++; counter_time_offset++;
mean_time_offset = sum_time_offset/counter_time_offset; mean_time_offset_us = sum_time_offset_us/counter_time_offset;
mean_time_slope = sum_time_slope/counter_time_offset;
Serial.print("Offset calulation. We have "); Serial.print("Offset calulation. We have ");
Serial.print(counter_time_offset); Serial.print(counter_time_offset);
Serial.print("/"); Serial.print("/");
Serial.print(REQUIRED_NUMBER_MEANVALS); Serial.print(REQUIRED_NUMBER_MEANVALS);
Serial.print(" values. Mean offset value based on that is: "); Serial.print(" values. y=slope*x+offset. Mean offset value based on that is: ");
Serial.println(mean_time_offset); Serial.print(mean_time_offset_us);
Serial.print(" mean slope: ");
Serial.println(mean_time_slope);
} else { } else {
time_offset_ok = true; time_offset_ok = true;
} }
@ -524,7 +627,7 @@ void receive_values(void){
// the current offset is out of range ... // the current offset is out of range ...
// if the values before also already failed the criterion but the max allowed number of such fails is not reached ... just increase the counter. // if the values before also already failed the criterion but the max allowed number of such fails is not reached ... just increase the counter.
if(failed_offsets < MAX_ALLOWED_FAILED_OFFSETS){ if(failed_offsets < MAX_ALLOWED_FAILED_OFFSETS){
//Serial.println("WARNING: The last received TOPSTATION offset time stamp was out of range. Increase internal fail counter"); Serial.println("WARNING: The last received TOPSTATION offset time stamp was out of range. Increase internal fail counter");
failed_offsets++; failed_offsets++;
} }
else{ else{
@ -542,20 +645,18 @@ void receive_values(void){
//Serial.println(mean_time_offset); //Serial.println(mean_time_offset);
time_offset_ok = false; time_offset_ok = false;
counter_time_offset = 0; counter_time_offset = 0;
sum_time_offset = 0; sum_time_offset_us = 0;
mean_time_offset = 0; sum_time_slope = 0;
mean_time_offset_us = 0;
mean_time_slope = 0;
failed_offsets = 0; failed_offsets = 0;
} // out of range counter exceeds maximum value } // out of range counter exceeds maximum value
} // time offset of TOPSTATION out of range } // time offset of TOPSTATION out of range
} else {
new_current_offset_available = false;
} }
else{
// remove the RF24 connection flag if no data was received for longer time
if((millis() - connection_last_established_at_ms >= CONN_TIMEOUT) || (connection_last_established_at_ms == 0)){
connection_available = false;
Serial.println("ERROR: No connection established to TOPSTATION");
}
} // radio available
} // keep connection off
}// receive values }// receive values
void update_screen(timer_state_e state){ void update_screen(timer_state_e state){
@ -567,7 +668,7 @@ void update_screen(timer_state_e state){
char string_to_char[50]; char string_to_char[50];
float curr_time_local = 0.0; signed long curr_time_local_s = 0;
switch(state){ switch(state){
case TIMER_NOCONNECTION: case TIMER_NOCONNECTION:
@ -582,27 +683,27 @@ void update_screen(timer_state_e state){
break; break;
case TIMER_IDLE: case TIMER_IDLE:
header = "Idle!"; header = "Idle!";
content = "00.00 sec"; content = "00.000 sec";
footer = "Waiting for climber"; footer = "Waiting for climber";
break; break;
case TIMER_READY: case TIMER_READY:
header = "Ready!"; header = "Ready!";
content = "00.00 sec"; content = "00.000 sec";
footer = "Waiting for start"; footer = "Waiting for start";
break; break;
case TIMER_STARTED: case TIMER_STARTED:
header = "Starting ..."; header = "Starting ...";
content = "00.00 sec"; content = "00.000 sec";
footer = "..."; footer = "...";
break; break;
case TIMER_RUNNING: case TIMER_RUNNING:
header = "Running ..."; header = "Running ...";
curr_time_local = (millis() - start_time)/1000.000; curr_time_local_s = (micros() - start_time_us);
content = curr_time_local; content = micros2string(curr_time_local_s);
content += " sec"; content += " sec";
curr_time_local = (runner_start_time - start_time)/1000.000; curr_time_local_s = (runner_start_time_us - start_time_us);
footer = "Reaction time: "; footer = "Reaction time: ";
footer += curr_time_local; footer += micros2string(curr_time_local_s);
footer += " sec"; footer += " sec";
break; break;
case TIMER_CANCELLED: case TIMER_CANCELLED:
@ -610,12 +711,12 @@ void update_screen(timer_state_e state){
break; break;
case TIMER_STOPPED: case TIMER_STOPPED:
header = "Stopped!"; header = "Stopped!";
curr_time_local = run_time/1000.000; curr_time_local_s = run_time_us;
content = curr_time_local; content = micros2string(curr_time_local_s);
content += " sec"; content += " sec";
curr_time_local = (runner_start_time - start_time)/1000.000; curr_time_local_s = (runner_start_time_us - start_time_us);
footer = "Reaction time: "; footer = "Reaction time: ";
footer += curr_time_local; footer += micros2string(curr_time_local_s);
footer += " sec"; footer += " sec";
break; break;
case TIMER_TIMEDOUT: case TIMER_TIMEDOUT:
@ -624,8 +725,8 @@ void update_screen(timer_state_e state){
break; break;
case TIMER_FAIL: case TIMER_FAIL:
header = "False start!"; header = "False start!";
curr_time_local = (start_time - runner_start_time)/1000.000; curr_time_local_s = (start_time_us - runner_start_time_us);
content = curr_time_local; content = micros2string(curr_time_local_s);
footer = "seconds too early"; footer = "seconds too early";
break; break;
case TIMER_SETTINGS: case TIMER_SETTINGS:
@ -721,9 +822,9 @@ void failSequence(void){
// first tone // first tone
if(failsequence_count <FAILSEQ_STEPS){ if(failsequence_count <FAILSEQ_STEPS){
// play the tone ... // play the tone ...
tone( PIEZO_PIN, FAILSEQ_NOTES[failsequence_count],FAILSEQ_DURATION[failsequence_count] ); tone( PIEZO_PIN, FAILSEQ_NOTES[failsequence_count],FAILSEQ_DURATION_MS[failsequence_count] );
if(failsequence_count > 0){ if(failsequence_count > 0){
Timer1.setPeriod(FAILSEQ_PAUSE[failsequence_count]); Timer1.setPeriod(FAILSEQ_PAUSE_US[failsequence_count]);
} }
// increase the counter // increase the counter
failsequence_count++; failsequence_count++;
@ -739,7 +840,7 @@ void stop_isr(void){
// this is the interrupt routine for the topstation STOP button // this is the interrupt routine for the topstation STOP button
// this will save the time when the runner has pushed the button // this will save the time when the runner has pushed the button
if(timer_state == TIMER_IDLE){ if(timer_state == TIMER_IDLE){
radio_data.topbuttonpressedtime = millis(); radio_data.topbuttonpressedtime_us = micros();
//Serial.print(radio_data.topbuttonpressedtime); //Serial.print(radio_data.topbuttonpressedtime);
//Serial.println(" ms <- current time ** stop_ISR ** stop button pushed: "); //Serial.println(" ms <- current time ** stop_ISR ** stop button pushed: ");
topbuttonwaspressed = true; topbuttonwaspressed = true;
@ -750,7 +851,7 @@ void false_start_isr(void) {
// this is the interrupt routine for the FALSESTART button // this is the interrupt routine for the FALSESTART button
// this will save the time when the runner is really started // this will save the time when the runner is really started
if(timer_new_state != TIMER_READY){ if(timer_new_state != TIMER_READY){
runner_start_time = millis(); runner_start_time_us = micros();
//Serial.print(runner_start_time); //Serial.print(runner_start_time);
//Serial.println(" ms <- current time ** false_start_ISR ** false start button released: "); //Serial.println(" ms <- current time ** false_start_ISR ** false start button released: ");
if(false == startsequence_done){ if(false == startsequence_done){
@ -773,8 +874,8 @@ void start_isr(void){
if(startsequence_count > 0){ if(startsequence_count > 0){
// play the tone ... // play the tone ...
//Serial.println(STARTSEQ_DURATION[startsequence_count]); //Serial.println(STARTSEQ_DURATION[startsequence_count]);
tone( PIEZO_PIN, STARTSEQ_NOTES[startsequence_count],STARTSEQ_DURATION[startsequence_count] ); tone( PIEZO_PIN, STARTSEQ_NOTES[startsequence_count],STARTSEQ_DURATION_MS[startsequence_count] );
Timer1.setPeriod(STARTSEQ_PAUSE[startsequence_count]); Timer1.setPeriod(STARTSEQ_PAUSE_US[startsequence_count]);
} }
// increase the counter // increase the counter
startsequence_count++; startsequence_count++;
@ -791,21 +892,21 @@ void start_isr(void){
} }
void send_values(void){ void send_values(void){
if(offset_sync_sequence || topbuttonwaspressed || ((millis()-radio_data.topstationtime) >= MIN_DELAY_BETWEEN_SEND_MS)){ if((((micros()-radio_data.topstationtime_us) > MIN_DELAY_BETWEEN_SEND_US) && (offset_sync_sequence || topbuttonwaspressed)) || ((micros()-radio_data.topstationtime_us) >= MAX_DELAY_BETWEEN_SEND_US)){
// store current millis to be send as reference ... // store current millis to be send as reference ...
radio_data.topstationtime = millis(); // set the current milli second count radio_data.topstationtime_us = micros(); // set the current micro second count
//Serial.print("senddate_to_base at:"); //Serial.print("senddate_to_base at:");
//Serial.println(millis()); //Serial.println(millis());
//Serial.print(" -> topstationtime:"); //Serial.print(" -> topstationtime:");
//Serial.print(radio_data.topstationtime); //Serial.print(radio_data.topstationtime_us);
//Serial.print("ms stoppressedtime:"); //Serial.print("us stoppressedtime:");
//Serial.print(radio_data.topbuttonpressedtime); //Serial.print(radio_data.topbuttonpressedtime_us);
//Serial.print("ms offset counter value :"); //Serial.print("us offset counter value :");
//Serial.println(counter_time_offset); //Serial.println(counter_time_offset);
// send data ... // send data ...
if (!radio.write(&radio_data,sizeof(radio_data))){ // Send the counter variable to the other radio if (!radio.write(&radio_data,sizeof(radio_data))){ // Send the counter variable to the other radio
if(((millis() - connection_last_established_at_ms) >= (CONN_TIMEOUT-100))){ if(((millis() - connection_last_established_at_ms) >= (CONN_TIMEOUT_MS-100))){
connection_available = false; connection_available = false;
//Serial.println("Failed to send data to BASESSTATION ... will retry"); //Serial.println("Failed to send data to BASESSTATION ... will retry");
} else { } else {
@ -822,7 +923,7 @@ void send_values(void){
connection_last_established_at_ms = millis(); connection_last_established_at_ms = millis();
connection_available = true; connection_available = true;
// check offset sync counter ... // check offset sync counter ...
if(counter_time_offset < (4*REQUIRED_NUMBER_MEANVALS)){ if(counter_time_offset < (2*REQUIRED_NUMBER_MEANVALS)){
counter_time_offset++; counter_time_offset++;
} else { } else {
// offset sync done // offset sync done
@ -833,4 +934,12 @@ void send_values(void){
} }
} }
String micros2string(signed long microsecs){
char buf[32] = "";
String bufstring;
sprintf(buf, "%032d", microsecs);
sprintf(buf, "%c%c:%c%c%c", buf[24],buf[25],buf[26],buf[27],buf[28]);
bufstring = (String)buf;
return bufstring;
}