189 lines
6.6 KiB
Arduino
189 lines
6.6 KiB
Arduino
|
#include <FastLED.h>
|
||
|
|
||
|
#define LED_PIN 5
|
||
|
#define NUM_LEDS 300
|
||
|
#define BRIGHTNESS 100
|
||
|
#define LED_TYPE WS2812
|
||
|
#define COLOR_ORDER GRB
|
||
|
CRGB leds[NUM_LEDS];
|
||
|
|
||
|
#define UPDATES_PER_SECOND 10
|
||
|
|
||
|
// This example shows several ways to set up and use 'palettes' of colors
|
||
|
// with FastLED.
|
||
|
//
|
||
|
// These compact palettes provide an easy way to re-colorize your
|
||
|
// animation on the fly, quickly, easily, and with low overhead.
|
||
|
//
|
||
|
// USING palettes is MUCH simpler in practice than in theory, so first just
|
||
|
// run this sketch, and watch the pretty lights as you then read through
|
||
|
// the code. Although this sketch has eight (or more) different color schemes,
|
||
|
// the entire sketch compiles down to about 6.5K on AVR.
|
||
|
//
|
||
|
// FastLED provides a few pre-configured color palettes, and makes it
|
||
|
// extremely easy to make up your own color schemes with palettes.
|
||
|
//
|
||
|
// Some notes on the more abstract 'theory and practice' of
|
||
|
// FastLED compact palettes are at the bottom of this file.
|
||
|
|
||
|
|
||
|
|
||
|
CRGBPalette16 currentPalette;
|
||
|
TBlendType currentBlending;
|
||
|
|
||
|
extern CRGBPalette16 myRedWhiteBluePalette;
|
||
|
extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;
|
||
|
|
||
|
|
||
|
void setup() {
|
||
|
delay( 3000 ); // power-up safety delay
|
||
|
FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
|
||
|
FastLED.setBrightness( BRIGHTNESS );
|
||
|
|
||
|
currentPalette = RainbowColors_p;
|
||
|
currentBlending = LINEARBLEND;
|
||
|
}
|
||
|
|
||
|
|
||
|
void loop()
|
||
|
{
|
||
|
ChangePalettePeriodically();
|
||
|
|
||
|
static uint8_t startIndex = 0;
|
||
|
startIndex = startIndex + 1; /* motion speed */
|
||
|
|
||
|
FillLEDsFromPaletteColors( startIndex);
|
||
|
|
||
|
FastLED.show();
|
||
|
FastLED.delay(1000 / UPDATES_PER_SECOND);
|
||
|
}
|
||
|
|
||
|
void FillLEDsFromPaletteColors( uint8_t colorIndex)
|
||
|
{
|
||
|
uint8_t brightness = 255;
|
||
|
|
||
|
for( int i = 0; i < NUM_LEDS; i++) {
|
||
|
leds[i] = ColorFromPalette( currentPalette, colorIndex, brightness, currentBlending);
|
||
|
colorIndex += 3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// There are several different palettes of colors demonstrated here.
|
||
|
//
|
||
|
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
|
||
|
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
|
||
|
//
|
||
|
// Additionally, you can manually define your own color palettes, or you can write
|
||
|
// code that creates color palettes on the fly. All are shown here.
|
||
|
|
||
|
void ChangePalettePeriodically()
|
||
|
{
|
||
|
uint8_t secondHand = (millis() / 1000) % 60;
|
||
|
static uint8_t lastSecond = 99;
|
||
|
|
||
|
if( lastSecond != secondHand) {
|
||
|
lastSecond = secondHand;
|
||
|
if( secondHand == 0) { currentPalette = RainbowColors_p; currentBlending = LINEARBLEND; }
|
||
|
if( secondHand == 10) { currentPalette = RainbowStripeColors_p; currentBlending = NOBLEND; }
|
||
|
if( secondHand == 15) { currentPalette = RainbowStripeColors_p; currentBlending = LINEARBLEND; }
|
||
|
if( secondHand == 20) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
|
||
|
if( secondHand == 25) { SetupTotallyRandomPalette(); currentBlending = LINEARBLEND; }
|
||
|
if( secondHand == 30) { SetupBlackAndWhiteStripedPalette(); currentBlending = NOBLEND; }
|
||
|
if( secondHand == 35) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
|
||
|
if( secondHand == 40) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
|
||
|
if( secondHand == 45) { currentPalette = PartyColors_p; currentBlending = LINEARBLEND; }
|
||
|
if( secondHand == 50) { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND; }
|
||
|
if( secondHand == 55) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This function fills the palette with totally random colors.
|
||
|
void SetupTotallyRandomPalette()
|
||
|
{
|
||
|
for( int i = 0; i < 16; i++) {
|
||
|
currentPalette[i] = CHSV( random8(), 255, random8());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This function sets up a palette of black and white stripes,
|
||
|
// using code. Since the palette is effectively an array of
|
||
|
// sixteen CRGB colors, the various fill_* functions can be used
|
||
|
// to set them up.
|
||
|
void SetupBlackAndWhiteStripedPalette()
|
||
|
{
|
||
|
// 'black out' all 16 palette entries...
|
||
|
fill_solid( currentPalette, 16, CRGB::Black);
|
||
|
// and set every fourth one to white.
|
||
|
currentPalette[0] = CRGB::White;
|
||
|
currentPalette[4] = CRGB::White;
|
||
|
currentPalette[8] = CRGB::White;
|
||
|
currentPalette[12] = CRGB::White;
|
||
|
|
||
|
}
|
||
|
|
||
|
// This function sets up a palette of purple and green stripes.
|
||
|
void SetupPurpleAndGreenPalette()
|
||
|
{
|
||
|
CRGB purple = CHSV( HUE_PURPLE, 255, 255);
|
||
|
CRGB green = CHSV( HUE_GREEN, 255, 255);
|
||
|
CRGB black = CRGB::Black;
|
||
|
|
||
|
currentPalette = CRGBPalette16(
|
||
|
green, green, black, black,
|
||
|
purple, purple, black, black,
|
||
|
green, green, black, black,
|
||
|
purple, purple, black, black );
|
||
|
}
|
||
|
|
||
|
|
||
|
// This example shows how to set up a static color palette
|
||
|
// which is stored in PROGMEM (flash), which is almost always more
|
||
|
// plentiful than RAM. A static PROGMEM palette like this
|
||
|
// takes up 64 bytes of flash.
|
||
|
const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM =
|
||
|
{
|
||
|
CRGB::Red,
|
||
|
CRGB::Gray, // 'white' is too bright compared to red and blue
|
||
|
CRGB::Blue,
|
||
|
CRGB::Black,
|
||
|
|
||
|
CRGB::Red,
|
||
|
CRGB::Gray,
|
||
|
CRGB::Blue,
|
||
|
CRGB::Black,
|
||
|
|
||
|
CRGB::Red,
|
||
|
CRGB::Red,
|
||
|
CRGB::Gray,
|
||
|
CRGB::Gray,
|
||
|
CRGB::Blue,
|
||
|
CRGB::Blue,
|
||
|
CRGB::Black,
|
||
|
CRGB::Black
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
// Additionl notes on FastLED compact palettes:
|
||
|
//
|
||
|
// Normally, in computer graphics, the palette (or "color lookup table")
|
||
|
// has 256 entries, each containing a specific 24-bit RGB color. You can then
|
||
|
// index into the color palette using a simple 8-bit (one byte) value.
|
||
|
// A 256-entry color palette takes up 768 bytes of RAM, which on Arduino
|
||
|
// is quite possibly "too many" bytes.
|
||
|
//
|
||
|
// FastLED does offer traditional 256-element palettes, for setups that
|
||
|
// can afford the 768-byte cost in RAM.
|
||
|
//
|
||
|
// However, FastLED also offers a compact alternative. FastLED offers
|
||
|
// palettes that store 16 distinct entries, but can be accessed AS IF
|
||
|
// they actually have 256 entries; this is accomplished by interpolating
|
||
|
// between the 16 explicit entries to create fifteen intermediate palette
|
||
|
// entries between each pair.
|
||
|
//
|
||
|
// So for example, if you set the first two explicit entries of a compact
|
||
|
// palette to Green (0,255,0) and Blue (0,0,255), and then retrieved
|
||
|
// the first sixteen entries from the virtual palette (of 256), you'd get
|
||
|
// Green, followed by a smooth gradient from green-to-blue, and then Blue.
|