leddisplay/libraries/FastLED/platforms/arm/k66/fastspi_arm_k66.h
2018-10-13 22:34:06 +02:00

471 lines
16 KiB
C++

#ifndef __INC_FASTSPI_ARM_H
#define __INC_FASTSPI_ARM_H
//
// copied from k20 code
// changed SPI1 define to KINETISK_SPI1
// TODO: add third alternative MOSI pin (28) and CLOCK pin (27)
// TODO: add alternative pins for SPI1
// TODO: add SPI2 output
//
FASTLED_NAMESPACE_BEGIN
#if defined(FASTLED_TEENSY3) && defined(CORE_TEENSY)
// Version 1.20 renamed SPI_t to KINETISK_SPI_t
#if TEENSYDUINO >= 120
#define SPI_t KINETISK_SPI_t
#endif
#ifndef KINETISK_SPI0
#define KINETISK_SPI0 SPI0
#endif
#ifndef SPI_PUSHR_CONT
#define SPI_PUSHR_CONT SPIX.PUSHR_CONT
#define SPI_PUSHR_CTAS(X) SPIX.PUSHR_CTAS(X)
#define SPI_PUSHR_EOQ SPIX.PUSHR_EOQ
#define SPI_PUSHR_CTCNT SPIX.PUSHR_CTCNT
#define SPI_PUSHR_PCS(X) SPIX.PUSHR_PCS(X)
#endif
// Template function that, on compilation, expands to a constant representing the highest bit set in a byte. Right now,
// if no bits are set (value is 0), it returns 0, which is also the value returned if the lowest bit is the only bit
// set (the zero-th bit). Unclear if I will want this to change at some point.
template<int VAL, int BIT> class BitWork {
public:
static int highestBit() __attribute__((always_inline)) { return (VAL & 1 << BIT) ? BIT : BitWork<VAL, BIT-1>::highestBit(); }
};
template<int VAL> class BitWork<VAL, 0> {
public:
static int highestBit() __attribute__((always_inline)) { return 0; }
};
#define MAX(A, B) (( (A) > (B) ) ? (A) : (B))
#define USE_CONT 0
// intra-frame backup data
struct SPIState {
uint32_t _ctar0,_ctar1;
uint32_t pins[4];
};
// extern SPIState gState;
// Templated function to translate a clock divider value into the prescalar, scalar, and clock doubling setting for the world.
template <int VAL> void getScalars(uint32_t & preScalar, uint32_t & scalar, uint32_t & dbl) {
switch(VAL) {
// Handle the dbl clock cases
case 0: case 1:
case 2: preScalar = 0; scalar = 0; dbl = 1; break;
case 3: preScalar = 1; scalar = 0; dbl = 1; break;
case 5: preScalar = 2; scalar = 0; dbl = 1; break;
case 7: preScalar = 3; scalar = 0; dbl = 1; break;
// Handle the scalar value 6 cases (since it's not a power of two, it won't get caught
// below)
case 9: preScalar = 1; scalar = 2; dbl = 1; break;
case 18: case 19: preScalar = 1; scalar = 2; dbl = 0; break;
case 15: preScalar = 2; scalar = 2; dbl = 1; break;
case 30: case 31: preScalar = 2; scalar = 2; dbl = 0; break;
case 21: case 22: case 23: preScalar = 3; scalar = 2; dbl = 1; break;
case 42: case 43: case 44: case 45: case 46: case 47: preScalar = 3; scalar = 2; dbl = 0; break;
default: {
int p2 = BitWork<VAL/2, 15>::highestBit();
int p3 = BitWork<VAL/3, 15>::highestBit();
int p5 = BitWork<VAL/5, 15>::highestBit();
int p7 = BitWork<VAL/7, 15>::highestBit();
int w2 = 2 * (1 << p2);
int w3 = (VAL/3) > 0 ? 3 * (1 << p3) : 0;
int w5 = (VAL/5) > 0 ? 5 * (1 << p5) : 0;
int w7 = (VAL/7) > 0 ? 7 * (1 << p7) : 0;
int maxval = MAX(MAX(w2, w3), MAX(w5, w7));
if(w2 == maxval) { preScalar = 0; scalar = p2; }
else if(w3 == maxval) { preScalar = 1; scalar = p3; }
else if(w5 == maxval) { preScalar = 2; scalar = p5; }
else if(w7 == maxval) { preScalar = 3; scalar = p7; }
dbl = 0;
if(scalar == 0) { dbl = 1; }
else if(scalar < 3) { scalar--; }
}
}
return;
}
#define SPIX (*(SPI_t*)pSPIX)
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER, uint32_t pSPIX>
class ARMHardwareSPIOutput {
Selectable *m_pSelect;
SPIState gState;
// Borrowed from the teensy3 SPSR emulation code -- note, enabling pin 7 disables pin 11 (and vice versa),
// and likewise enabling pin 14 disables pin 13 (and vice versa)
inline void enable_pins(void) __attribute__((always_inline)) {
//serial_print("enable_pins\n");
switch(_DATA_PIN) {
case 7:
CORE_PIN7_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN11_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
case 11:
CORE_PIN11_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN7_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
}
switch(_CLOCK_PIN) {
case 13:
CORE_PIN13_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN14_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
case 14:
CORE_PIN14_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN13_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
}
}
// Borrowed from the teensy3 SPSR emulation code. We disable the pins that we're using, and restore the state on the pins that we aren't using
inline void disable_pins(void) __attribute__((always_inline)) {
switch(_DATA_PIN) {
case 7: CORE_PIN7_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN11_CONFIG = gState.pins[1]; break;
case 11: CORE_PIN11_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN7_CONFIG = gState.pins[0]; break;
}
switch(_CLOCK_PIN) {
case 13: CORE_PIN13_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN14_CONFIG = gState.pins[3]; break;
case 14: CORE_PIN14_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN13_CONFIG = gState.pins[2]; break;
}
}
static inline void update_ctars(uint32_t ctar0, uint32_t ctar1) __attribute__((always_inline)) {
if(SPIX.CTAR0 == ctar0 && SPIX.CTAR1 == ctar1) return;
uint32_t mcr = SPIX.MCR;
if(mcr & SPI_MCR_MDIS) {
SPIX.CTAR0 = ctar0;
SPIX.CTAR1 = ctar1;
} else {
SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPIX.CTAR0 = ctar0;
SPIX.CTAR1 = ctar1;
SPIX.MCR = mcr;
}
}
static inline void update_ctar0(uint32_t ctar) __attribute__((always_inline)) {
if (SPIX.CTAR0 == ctar) return;
uint32_t mcr = SPIX.MCR;
if (mcr & SPI_MCR_MDIS) {
SPIX.CTAR0 = ctar;
} else {
SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPIX.CTAR0 = ctar;
SPIX.MCR = mcr;
}
}
static inline void update_ctar1(uint32_t ctar) __attribute__((always_inline)) {
if (SPIX.CTAR1 == ctar) return;
uint32_t mcr = SPIX.MCR;
if (mcr & SPI_MCR_MDIS) {
SPIX.CTAR1 = ctar;
} else {
SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPIX.CTAR1 = ctar;
SPIX.MCR = mcr;
}
}
void setSPIRate() {
// Configure CTAR0, defaulting to 8 bits and CTAR1, defaulting to 16 bits
uint32_t _PBR = 0;
uint32_t _BR = 0;
uint32_t _CSSCK = 0;
uint32_t _DBR = 0;
// if(_SPI_CLOCK_DIVIDER >= 256) { _PBR = 0; _BR = _CSSCK = 7; _DBR = 0; } // osc/256
// else if(_SPI_CLOCK_DIVIDER >= 128) { _PBR = 0; _BR = _CSSCK = 6; _DBR = 0; } // osc/128
// else if(_SPI_CLOCK_DIVIDER >= 64) { _PBR = 0; _BR = _CSSCK = 5; _DBR = 0; } // osc/64
// else if(_SPI_CLOCK_DIVIDER >= 32) { _PBR = 0; _BR = _CSSCK = 4; _DBR = 0; } // osc/32
// else if(_SPI_CLOCK_DIVIDER >= 16) { _PBR = 0; _BR = _CSSCK = 3; _DBR = 0; } // osc/16
// else if(_SPI_CLOCK_DIVIDER >= 8) { _PBR = 0; _BR = _CSSCK = 1; _DBR = 0; } // osc/8
// else if(_SPI_CLOCK_DIVIDER >= 7) { _PBR = 3; _BR = _CSSCK = 0; _DBR = 1; } // osc/7
// else if(_SPI_CLOCK_DIVIDER >= 5) { _PBR = 2; _BR = _CSSCK = 0; _DBR = 1; } // osc/5
// else if(_SPI_CLOCK_DIVIDER >= 4) { _PBR = 0; _BR = _CSSCK = 0; _DBR = 0; } // osc/4
// else if(_SPI_CLOCK_DIVIDER >= 3) { _PBR = 1; _BR = _CSSCK = 0; _DBR = 1; } // osc/3
// else { _PBR = 0; _BR = _CSSCK = 0; _DBR = 1; } // osc/2
getScalars<_SPI_CLOCK_DIVIDER>(_PBR, _BR, _DBR);
_CSSCK = _BR;
uint32_t ctar0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
uint32_t ctar1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
#if USE_CONT == 1
ctar0 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
ctar1 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
#endif
if(_DBR) {
ctar0 |= SPI_CTAR_DBR;
ctar1 |= SPI_CTAR_DBR;
}
update_ctars(ctar0,ctar1);
}
void inline save_spi_state() __attribute__ ((always_inline)) {
// save ctar data
gState._ctar0 = SPIX.CTAR0;
gState._ctar1 = SPIX.CTAR1;
// save data for the not-us pins
gState.pins[0] = CORE_PIN7_CONFIG;
gState.pins[1] = CORE_PIN11_CONFIG;
gState.pins[2] = CORE_PIN13_CONFIG;
gState.pins[3] = CORE_PIN14_CONFIG;
}
void inline restore_spi_state() __attribute__ ((always_inline)) {
// restore ctar data
update_ctars(gState._ctar0,gState._ctar1);
// restore data for the not-us pins (not necessary because disable_pins will do this)
// CORE_PIN7_CONFIG = gState.pins[0];
// CORE_PIN11_CONFIG = gState.pins[1];
// CORE_PIN13_CONFIG = gState.pins[2];
// CORE_PIN14_CONFIG = gState.pins[3];
}
public:
ARMHardwareSPIOutput() { m_pSelect = NULL; }
ARMHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void init() {
// set the pins to output
FastPin<_DATA_PIN>::setOutput();
FastPin<_CLOCK_PIN>::setOutput();
// Enable SPI0 clock
uint32_t sim6 = SIM_SCGC6;
if((SPI_t*)pSPIX == &KINETISK_SPI0) {
if (!(sim6 & SIM_SCGC6_SPI0)) {
//serial_print("init1\n");
SIM_SCGC6 = sim6 | SIM_SCGC6_SPI0;
SPIX.CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(1) | SPI_CTAR_BR(1);
}
} else if((SPI_t*)pSPIX == &KINETISK_SPI1) {
if (!(sim6 & SIM_SCGC6_SPI1)) {
//serial_print("init1\n");
SIM_SCGC6 = sim6 | SIM_SCGC6_SPI1;
SPIX.CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(1) | SPI_CTAR_BR(1);
}
}
// Configure SPI as the master and enable
SPIX.MCR |= SPI_MCR_MSTR; // | SPI_MCR_CONT_SCKE);
SPIX.MCR &= ~(SPI_MCR_MDIS | SPI_MCR_HALT);
// pin/spi configuration happens on select
}
static void waitFully() __attribute__((always_inline)) {
// Wait for the last byte to get shifted into the register
bool empty = false;
do {
cli();
if ((SPIX.SR & 0xF000) > 0) {
// reset the TCF flag
SPIX.SR |= SPI_SR_TCF;
} else {
empty = true;
}
sei();
} while (!empty);
// wait for the TCF flag to get set
while (!(SPIX.SR & SPI_SR_TCF));
SPIX.SR |= (SPI_SR_TCF | SPI_SR_EOQF);
}
static bool needwait() __attribute__((always_inline)) { return (SPIX.SR & 0x4000); }
static void wait() __attribute__((always_inline)) { while( (SPIX.SR & 0x4000) ); }
static void wait1() __attribute__((always_inline)) { while( (SPIX.SR & 0xF000) >= 0x2000); }
enum ECont { CONT, NOCONT };
enum EWait { PRE, POST, NONE };
enum ELast { NOTLAST, LAST };
#if USE_CONT == 1
#define CM CONT
#else
#define CM NOCONT
#endif
#define WM PRE
template<ECont CONT_STATE, EWait WAIT_STATE, ELast LAST_STATE> class Write {
public:
static void writeWord(uint16_t w) __attribute__((always_inline)) {
if(WAIT_STATE == PRE) { wait(); }
SPIX.PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
SPI_PUSHR_CTAS(1) | (w & 0xFFFF);
SPIX.SR |= SPI_SR_TCF;
if(WAIT_STATE == POST) { wait(); }
}
static void writeByte(uint8_t b) __attribute__((always_inline)) {
if(WAIT_STATE == PRE) { wait(); }
SPIX.PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
SPI_PUSHR_CTAS(0) | (b & 0xFF);
SPIX.SR |= SPI_SR_TCF;
if(WAIT_STATE == POST) { wait(); }
}
};
static void writeWord(uint16_t w) __attribute__((always_inline)) { wait(); SPIX.PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF;}
static void writeWordNoWait(uint16_t w) __attribute__((always_inline)) { SPIX.PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF;}
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF;}
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF);SPIX.SR |= SPI_SR_TCF; wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF;}
static void writeWordCont(uint16_t w) __attribute__((always_inline)) { wait(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF;}
static void writeWordContNoWait(uint16_t w) __attribute__((always_inline)) { SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF;}
static void writeByteCont(uint8_t b) __attribute__((always_inline)) { wait(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF;}
static void writeByteContPostWait(uint8_t b) __attribute__((always_inline)) { SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF;wait(); }
static void writeByteContNoWait(uint8_t b) __attribute__((always_inline)) { SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF;}
// not the most efficient mechanism in the world - but should be enough for sm16716 and friends
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
uint32_t ctar1_save = SPIX.CTAR1;
// Clear out the FMSZ bits, reset them for 1 bit transferd for the start bit
uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(0);
update_ctar1(ctar1);
writeWord( (b & (1 << BIT)) != 0);
update_ctar1(ctar1_save);
}
void inline select() __attribute__((always_inline)) {
save_spi_state();
if(m_pSelect != NULL) { m_pSelect->select(); }
setSPIRate();
enable_pins();
}
void inline release() __attribute__((always_inline)) {
disable_pins();
if(m_pSelect != NULL) { m_pSelect->release(); }
restore_spi_state();
}
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) { Write<CM, WM, NOTLAST>::writeByte(value); }
}
void writeBytesValue(uint8_t value, int len) {
select();
while(len--) {
writeByte(value);
}
waitFully();
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
uint8_t *end = data + len;
select();
// could be optimized to write 16bit words out instead of 8bit bytes
while(data != end) {
writeByte(D::adjust(*data++));
}
D::postBlock(len);
waitFully();
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
select();
int len = pixels.mLen;
// Setup the pixel controller
if((FLAGS & FLAG_START_BIT) == 0) {
//If no start bit stupiditiy, write out as many 16-bit blocks as we can
while(pixels.has(2)) {
// Load and write out the first two bytes
if(WM == NONE) { wait1(); }
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale0()) << 8 | D::adjust(pixels.loadAndScale1()));
// Load and write out the next two bytes (step dithering, advance data in between since we
// cross pixels here)
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale2()) << 8 | D::adjust(pixels.stepAdvanceAndLoadAndScale0()));
// Load and write out the next two bytes
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale1()) << 8 | D::adjust(pixels.loadAndScale2()));
pixels.stepDithering();
pixels.advanceData();
}
if(pixels.has(1)) {
if(WM == NONE) { wait1(); }
// write out the rest as alternating 16/8-bit blocks (likely to be just one)
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale0()) << 8 | D::adjust(pixels.loadAndScale1()));
Write<CM, WM, NOTLAST>::writeByte(D::adjust(pixels.loadAndScale2()));
}
D::postBlock(len);
waitFully();
} else if(FLAGS & FLAG_START_BIT) {
uint32_t ctar1_save = SPIX.CTAR1;
// Clear out the FMSZ bits, reset them for 9 bits transferd for the start bit
uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(8);
update_ctar1(ctar1);
while(pixels.has(1)) {
writeWord( 0x100 | D::adjust(pixels.loadAndScale0()));
writeByte(D::adjust(pixels.loadAndScale1()));
writeByte(D::adjust(pixels.loadAndScale2()));
pixels.advanceData();
pixels.stepDithering();
}
D::postBlock(len);
waitFully();
// restore ctar1
update_ctar1(ctar1_save);
}
release();
}
};
#endif
FASTLED_NAMESPACE_END
#endif