1198 lines
33 KiB
C++
1198 lines
33 KiB
C++
#define FASTLED_INTERNAL
|
|
#define __PROG_TYPES_COMPAT__
|
|
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
|
|
#include "FastLED.h"
|
|
|
|
FASTLED_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
void fill_solid( struct CRGB * leds, int numToFill,
|
|
const struct CRGB& color)
|
|
{
|
|
for( int i = 0; i < numToFill; i++) {
|
|
leds[i] = color;
|
|
}
|
|
}
|
|
|
|
void fill_solid( struct CHSV * targetArray, int numToFill,
|
|
const struct CHSV& hsvColor)
|
|
{
|
|
for( int i = 0; i < numToFill; i++) {
|
|
targetArray[i] = hsvColor;
|
|
}
|
|
}
|
|
|
|
|
|
// void fill_solid( struct CRGB* targetArray, int numToFill,
|
|
// const struct CHSV& hsvColor)
|
|
// {
|
|
// fill_solid<CRGB>( targetArray, numToFill, (CRGB) hsvColor);
|
|
// }
|
|
|
|
void fill_rainbow( struct CRGB * pFirstLED, int numToFill,
|
|
uint8_t initialhue,
|
|
uint8_t deltahue )
|
|
{
|
|
CHSV hsv;
|
|
hsv.hue = initialhue;
|
|
hsv.val = 255;
|
|
hsv.sat = 240;
|
|
for( int i = 0; i < numToFill; i++) {
|
|
pFirstLED[i] = hsv;
|
|
hsv.hue += deltahue;
|
|
}
|
|
}
|
|
|
|
void fill_rainbow( struct CHSV * targetArray, int numToFill,
|
|
uint8_t initialhue,
|
|
uint8_t deltahue )
|
|
{
|
|
CHSV hsv;
|
|
hsv.hue = initialhue;
|
|
hsv.val = 255;
|
|
hsv.sat = 240;
|
|
for( int i = 0; i < numToFill; i++) {
|
|
targetArray[i] = hsv;
|
|
hsv.hue += deltahue;
|
|
}
|
|
}
|
|
|
|
|
|
void fill_gradient_RGB( CRGB* leds,
|
|
uint16_t startpos, CRGB startcolor,
|
|
uint16_t endpos, CRGB endcolor )
|
|
{
|
|
// if the points are in the wrong order, straighten them
|
|
if( endpos < startpos ) {
|
|
uint16_t t = endpos;
|
|
CRGB tc = endcolor;
|
|
endcolor = startcolor;
|
|
endpos = startpos;
|
|
startpos = t;
|
|
startcolor = tc;
|
|
}
|
|
|
|
saccum87 rdistance87;
|
|
saccum87 gdistance87;
|
|
saccum87 bdistance87;
|
|
|
|
rdistance87 = (endcolor.r - startcolor.r) << 7;
|
|
gdistance87 = (endcolor.g - startcolor.g) << 7;
|
|
bdistance87 = (endcolor.b - startcolor.b) << 7;
|
|
|
|
uint16_t pixeldistance = endpos - startpos;
|
|
int16_t divisor = pixeldistance ? pixeldistance : 1;
|
|
|
|
saccum87 rdelta87 = rdistance87 / divisor;
|
|
saccum87 gdelta87 = gdistance87 / divisor;
|
|
saccum87 bdelta87 = bdistance87 / divisor;
|
|
|
|
rdelta87 *= 2;
|
|
gdelta87 *= 2;
|
|
bdelta87 *= 2;
|
|
|
|
accum88 r88 = startcolor.r << 8;
|
|
accum88 g88 = startcolor.g << 8;
|
|
accum88 b88 = startcolor.b << 8;
|
|
for( uint16_t i = startpos; i <= endpos; i++) {
|
|
leds[i] = CRGB( r88 >> 8, g88 >> 8, b88 >> 8);
|
|
r88 += rdelta87;
|
|
g88 += gdelta87;
|
|
b88 += bdelta87;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
void fill_gradient( const CHSV& c1, const CHSV& c2)
|
|
{
|
|
fill_gradient( FastLED[0].leds(), FastLED[0].size(), c1, c2);
|
|
}
|
|
|
|
void fill_gradient( const CHSV& c1, const CHSV& c2, const CHSV& c3)
|
|
{
|
|
fill_gradient( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3);
|
|
}
|
|
|
|
void fill_gradient( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
|
|
{
|
|
fill_gradient( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3, c4);
|
|
}
|
|
|
|
void fill_gradient_RGB( const CRGB& c1, const CRGB& c2)
|
|
{
|
|
fill_gradient_RGB( FastLED[0].leds(), FastLED[0].size(), c1, c2);
|
|
}
|
|
|
|
void fill_gradient_RGB( const CRGB& c1, const CRGB& c2, const CRGB& c3)
|
|
{
|
|
fill_gradient_RGB( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3);
|
|
}
|
|
|
|
void fill_gradient_RGB( const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
|
|
{
|
|
fill_gradient_RGB( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3, c4);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2)
|
|
{
|
|
uint16_t last = numLeds - 1;
|
|
fill_gradient_RGB( leds, 0, c1, last, c2);
|
|
}
|
|
|
|
|
|
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3)
|
|
{
|
|
uint16_t half = (numLeds / 2);
|
|
uint16_t last = numLeds - 1;
|
|
fill_gradient_RGB( leds, 0, c1, half, c2);
|
|
fill_gradient_RGB( leds, half, c2, last, c3);
|
|
}
|
|
|
|
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
|
|
{
|
|
uint16_t onethird = (numLeds / 3);
|
|
uint16_t twothirds = ((numLeds * 2) / 3);
|
|
uint16_t last = numLeds - 1;
|
|
fill_gradient_RGB( leds, 0, c1, onethird, c2);
|
|
fill_gradient_RGB( leds, onethird, c2, twothirds, c3);
|
|
fill_gradient_RGB( leds, twothirds, c3, last, c4);
|
|
}
|
|
|
|
|
|
|
|
|
|
void nscale8_video( CRGB* leds, uint16_t num_leds, uint8_t scale)
|
|
{
|
|
for( uint16_t i = 0; i < num_leds; i++) {
|
|
leds[i].nscale8_video( scale);
|
|
}
|
|
}
|
|
|
|
void fade_video(CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
|
|
{
|
|
nscale8_video( leds, num_leds, 255 - fadeBy);
|
|
}
|
|
|
|
void fadeLightBy(CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
|
|
{
|
|
nscale8_video( leds, num_leds, 255 - fadeBy);
|
|
}
|
|
|
|
|
|
void fadeToBlackBy( CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
|
|
{
|
|
nscale8( leds, num_leds, 255 - fadeBy);
|
|
}
|
|
|
|
void fade_raw( CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
|
|
{
|
|
nscale8( leds, num_leds, 255 - fadeBy);
|
|
}
|
|
|
|
void nscale8_raw( CRGB* leds, uint16_t num_leds, uint8_t scale)
|
|
{
|
|
nscale8( leds, num_leds, scale);
|
|
}
|
|
|
|
void nscale8( CRGB* leds, uint16_t num_leds, uint8_t scale)
|
|
{
|
|
for( uint16_t i = 0; i < num_leds; i++) {
|
|
leds[i].nscale8( scale);
|
|
}
|
|
}
|
|
|
|
void fadeUsingColor( CRGB* leds, uint16_t numLeds, const CRGB& colormask)
|
|
{
|
|
uint8_t fr, fg, fb;
|
|
fr = colormask.r;
|
|
fg = colormask.g;
|
|
fb = colormask.b;
|
|
|
|
for( uint16_t i = 0; i < numLeds; i++) {
|
|
leds[i].r = scale8_LEAVING_R1_DIRTY( leds[i].r, fr);
|
|
leds[i].g = scale8_LEAVING_R1_DIRTY( leds[i].g, fg);
|
|
leds[i].b = scale8 ( leds[i].b, fb);
|
|
}
|
|
}
|
|
|
|
|
|
CRGB& nblend( CRGB& existing, const CRGB& overlay, fract8 amountOfOverlay )
|
|
{
|
|
if( amountOfOverlay == 0) {
|
|
return existing;
|
|
}
|
|
|
|
if( amountOfOverlay == 255) {
|
|
existing = overlay;
|
|
return existing;
|
|
}
|
|
|
|
#if 0
|
|
// Old blend method which unfortunately had some rounding errors
|
|
fract8 amountOfKeep = 255 - amountOfOverlay;
|
|
|
|
existing.red = scale8_LEAVING_R1_DIRTY( existing.red, amountOfKeep)
|
|
+ scale8_LEAVING_R1_DIRTY( overlay.red, amountOfOverlay);
|
|
existing.green = scale8_LEAVING_R1_DIRTY( existing.green, amountOfKeep)
|
|
+ scale8_LEAVING_R1_DIRTY( overlay.green, amountOfOverlay);
|
|
existing.blue = scale8_LEAVING_R1_DIRTY( existing.blue, amountOfKeep)
|
|
+ scale8_LEAVING_R1_DIRTY( overlay.blue, amountOfOverlay);
|
|
|
|
cleanup_R1();
|
|
#else
|
|
// Corrected blend method, with no loss-of-precision rounding errors
|
|
existing.red = blend8( existing.red, overlay.red, amountOfOverlay);
|
|
existing.green = blend8( existing.green, overlay.green, amountOfOverlay);
|
|
existing.blue = blend8( existing.blue, overlay.blue, amountOfOverlay);
|
|
#endif
|
|
|
|
return existing;
|
|
}
|
|
|
|
|
|
|
|
void nblend( CRGB* existing, CRGB* overlay, uint16_t count, fract8 amountOfOverlay)
|
|
{
|
|
for( uint16_t i = count; i; i--) {
|
|
nblend( *existing, *overlay, amountOfOverlay);
|
|
existing++;
|
|
overlay++;
|
|
}
|
|
}
|
|
|
|
CRGB blend( const CRGB& p1, const CRGB& p2, fract8 amountOfP2 )
|
|
{
|
|
CRGB nu(p1);
|
|
nblend( nu, p2, amountOfP2);
|
|
return nu;
|
|
}
|
|
|
|
CRGB* blend( const CRGB* src1, const CRGB* src2, CRGB* dest, uint16_t count, fract8 amountOfsrc2 )
|
|
{
|
|
for( uint16_t i = 0; i < count; i++) {
|
|
dest[i] = blend(src1[i], src2[i], amountOfsrc2);
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
|
|
|
|
CHSV& nblend( CHSV& existing, const CHSV& overlay, fract8 amountOfOverlay, TGradientDirectionCode directionCode)
|
|
{
|
|
if( amountOfOverlay == 0) {
|
|
return existing;
|
|
}
|
|
|
|
if( amountOfOverlay == 255) {
|
|
existing = overlay;
|
|
return existing;
|
|
}
|
|
|
|
fract8 amountOfKeep = 255 - amountOfOverlay;
|
|
|
|
uint8_t huedelta8 = overlay.hue - existing.hue;
|
|
|
|
if( directionCode == SHORTEST_HUES ) {
|
|
directionCode = FORWARD_HUES;
|
|
if( huedelta8 > 127) {
|
|
directionCode = BACKWARD_HUES;
|
|
}
|
|
}
|
|
|
|
if( directionCode == LONGEST_HUES ) {
|
|
directionCode = FORWARD_HUES;
|
|
if( huedelta8 < 128) {
|
|
directionCode = BACKWARD_HUES;
|
|
}
|
|
}
|
|
|
|
if( directionCode == FORWARD_HUES) {
|
|
existing.hue = existing.hue + scale8( huedelta8, amountOfOverlay);
|
|
}
|
|
else /* directionCode == BACKWARD_HUES */
|
|
{
|
|
huedelta8 = -huedelta8;
|
|
existing.hue = existing.hue - scale8( huedelta8, amountOfOverlay);
|
|
}
|
|
|
|
existing.sat = scale8_LEAVING_R1_DIRTY( existing.sat, amountOfKeep)
|
|
+ scale8_LEAVING_R1_DIRTY( overlay.sat, amountOfOverlay);
|
|
existing.val = scale8_LEAVING_R1_DIRTY( existing.val, amountOfKeep)
|
|
+ scale8_LEAVING_R1_DIRTY( overlay.val, amountOfOverlay);
|
|
|
|
cleanup_R1();
|
|
|
|
return existing;
|
|
}
|
|
|
|
|
|
|
|
void nblend( CHSV* existing, CHSV* overlay, uint16_t count, fract8 amountOfOverlay, TGradientDirectionCode directionCode )
|
|
{
|
|
if(existing == overlay) return;
|
|
for( uint16_t i = count; i; i--) {
|
|
nblend( *existing, *overlay, amountOfOverlay, directionCode);
|
|
existing++;
|
|
overlay++;
|
|
}
|
|
}
|
|
|
|
CHSV blend( const CHSV& p1, const CHSV& p2, fract8 amountOfP2, TGradientDirectionCode directionCode )
|
|
{
|
|
CHSV nu(p1);
|
|
nblend( nu, p2, amountOfP2, directionCode);
|
|
return nu;
|
|
}
|
|
|
|
CHSV* blend( const CHSV* src1, const CHSV* src2, CHSV* dest, uint16_t count, fract8 amountOfsrc2, TGradientDirectionCode directionCode )
|
|
{
|
|
for( uint16_t i = 0; i < count; i++) {
|
|
dest[i] = blend(src1[i], src2[i], amountOfsrc2, directionCode);
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
|
|
|
|
// Forward declaration of the function "XY" which must be provided by
|
|
// the application for use in two-dimensional filter functions.
|
|
uint16_t XY( uint8_t, uint8_t);// __attribute__ ((weak));
|
|
|
|
|
|
// blur1d: one-dimensional blur filter. Spreads light to 2 line neighbors.
|
|
// blur2d: two-dimensional blur filter. Spreads light to 8 XY neighbors.
|
|
//
|
|
// 0 = no spread at all
|
|
// 64 = moderate spreading
|
|
// 172 = maximum smooth, even spreading
|
|
//
|
|
// 173..255 = wider spreading, but increasing flicker
|
|
//
|
|
// Total light is NOT entirely conserved, so many repeated
|
|
// calls to 'blur' will also result in the light fading,
|
|
// eventually all the way to black; this is by design so that
|
|
// it can be used to (slowly) clear the LEDs to black.
|
|
void blur1d( CRGB* leds, uint16_t numLeds, fract8 blur_amount)
|
|
{
|
|
uint8_t keep = 255 - blur_amount;
|
|
uint8_t seep = blur_amount >> 1;
|
|
CRGB carryover = CRGB::Black;
|
|
for( uint16_t i = 0; i < numLeds; i++) {
|
|
CRGB cur = leds[i];
|
|
CRGB part = cur;
|
|
part.nscale8( seep);
|
|
cur.nscale8( keep);
|
|
cur += carryover;
|
|
if( i) leds[i-1] += part;
|
|
leds[i] = cur;
|
|
carryover = part;
|
|
}
|
|
}
|
|
|
|
void blur2d( CRGB* leds, uint8_t width, uint8_t height, fract8 blur_amount)
|
|
{
|
|
blurRows(leds, width, height, blur_amount);
|
|
blurColumns(leds, width, height, blur_amount);
|
|
}
|
|
|
|
// blurRows: perform a blur1d on every row of a rectangular matrix
|
|
void blurRows( CRGB* leds, uint8_t width, uint8_t height, fract8 blur_amount)
|
|
{
|
|
for( uint8_t row = 0; row < height; row++) {
|
|
CRGB* rowbase = leds + (row * width);
|
|
blur1d( rowbase, width, blur_amount);
|
|
}
|
|
}
|
|
|
|
// blurColumns: perform a blur1d on each column of a rectangular matrix
|
|
void blurColumns(CRGB* leds, uint8_t width, uint8_t height, fract8 blur_amount)
|
|
{
|
|
// blur columns
|
|
uint8_t keep = 255 - blur_amount;
|
|
uint8_t seep = blur_amount >> 1;
|
|
for( uint8_t col = 0; col < width; col++) {
|
|
CRGB carryover = CRGB::Black;
|
|
for( uint8_t i = 0; i < height; i++) {
|
|
CRGB cur = leds[XY(col,i)];
|
|
CRGB part = cur;
|
|
part.nscale8( seep);
|
|
cur.nscale8( keep);
|
|
cur += carryover;
|
|
if( i) leds[XY(col,i-1)] += part;
|
|
leds[XY(col,i)] = cur;
|
|
carryover = part;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// CRGB HeatColor( uint8_t temperature)
|
|
//
|
|
// Approximates a 'black body radiation' spectrum for
|
|
// a given 'heat' level. This is useful for animations of 'fire'.
|
|
// Heat is specified as an arbitrary scale from 0 (cool) to 255 (hot).
|
|
// This is NOT a chromatically correct 'black body radiation'
|
|
// spectrum, but it's surprisingly close, and it's fast and small.
|
|
//
|
|
// On AVR/Arduino, this typically takes around 70 bytes of program memory,
|
|
// versus 768 bytes for a full 256-entry RGB lookup table.
|
|
|
|
CRGB HeatColor( uint8_t temperature)
|
|
{
|
|
CRGB heatcolor;
|
|
|
|
// Scale 'heat' down from 0-255 to 0-191,
|
|
// which can then be easily divided into three
|
|
// equal 'thirds' of 64 units each.
|
|
uint8_t t192 = scale8_video( temperature, 191);
|
|
|
|
// calculate a value that ramps up from
|
|
// zero to 255 in each 'third' of the scale.
|
|
uint8_t heatramp = t192 & 0x3F; // 0..63
|
|
heatramp <<= 2; // scale up to 0..252
|
|
|
|
// now figure out which third of the spectrum we're in:
|
|
if( t192 & 0x80) {
|
|
// we're in the hottest third
|
|
heatcolor.r = 255; // full red
|
|
heatcolor.g = 255; // full green
|
|
heatcolor.b = heatramp; // ramp up blue
|
|
|
|
} else if( t192 & 0x40 ) {
|
|
// we're in the middle third
|
|
heatcolor.r = 255; // full red
|
|
heatcolor.g = heatramp; // ramp up green
|
|
heatcolor.b = 0; // no blue
|
|
|
|
} else {
|
|
// we're in the coolest third
|
|
heatcolor.r = heatramp; // ramp up red
|
|
heatcolor.g = 0; // no green
|
|
heatcolor.b = 0; // no blue
|
|
}
|
|
|
|
return heatcolor;
|
|
}
|
|
|
|
|
|
// lsrX4: helper function to divide a number by 16, aka four LSR's.
|
|
// On avr-gcc, "u8 >> 4" generates a loop, which is big, and slow.
|
|
// merely forcing it to be four /=2's causes avr-gcc to emit
|
|
// a SWAP instruction followed by an AND 0x0F, which is faster, and smaller.
|
|
inline uint8_t lsrX4( uint8_t dividend) __attribute__((always_inline));
|
|
inline uint8_t lsrX4( uint8_t dividend)
|
|
{
|
|
#if defined(__AVR__)
|
|
dividend /= 2;
|
|
dividend /= 2;
|
|
dividend /= 2;
|
|
dividend /= 2;
|
|
#else
|
|
dividend >>= 4;
|
|
#endif
|
|
return dividend;
|
|
}
|
|
|
|
|
|
CRGB ColorFromPalette( const CRGBPalette16& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
|
|
{
|
|
// hi4 = index >> 4;
|
|
uint8_t hi4 = lsrX4(index);
|
|
uint8_t lo4 = index & 0x0F;
|
|
|
|
// const CRGB* entry = &(pal[0]) + hi4;
|
|
// since hi4 is always 0..15, hi4 * sizeof(CRGB) can be a single-byte value,
|
|
// instead of the two byte 'int' that avr-gcc defaults to.
|
|
// So, we multiply hi4 X sizeof(CRGB), giving hi4XsizeofCRGB;
|
|
uint8_t hi4XsizeofCRGB = hi4 * sizeof(CRGB);
|
|
// We then add that to a base array pointer.
|
|
const CRGB* entry = (CRGB*)( (uint8_t*)(&(pal[0])) + hi4XsizeofCRGB);
|
|
|
|
uint8_t blend = lo4 && (blendType != NOBLEND);
|
|
|
|
uint8_t red1 = entry->red;
|
|
uint8_t green1 = entry->green;
|
|
uint8_t blue1 = entry->blue;
|
|
|
|
|
|
if( blend ) {
|
|
|
|
if( hi4 == 15 ) {
|
|
entry = &(pal[0]);
|
|
} else {
|
|
entry++;
|
|
}
|
|
|
|
uint8_t f2 = lo4 << 4;
|
|
uint8_t f1 = 255 - f2;
|
|
|
|
// rgb1.nscale8(f1);
|
|
uint8_t red2 = entry->red;
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, f1);
|
|
red2 = scale8_LEAVING_R1_DIRTY( red2, f2);
|
|
red1 += red2;
|
|
|
|
uint8_t green2 = entry->green;
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, f1);
|
|
green2 = scale8_LEAVING_R1_DIRTY( green2, f2);
|
|
green1 += green2;
|
|
|
|
uint8_t blue2 = entry->blue;
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, f1);
|
|
blue2 = scale8_LEAVING_R1_DIRTY( blue2, f2);
|
|
blue1 += blue2;
|
|
|
|
cleanup_R1();
|
|
}
|
|
|
|
if( brightness != 255) {
|
|
if( brightness ) {
|
|
brightness++; // adjust for rounding
|
|
// Now, since brightness is nonzero, we don't need the full scale8_video logic;
|
|
// we can just to scale8 and then add one (unless scale8 fixed) to all nonzero inputs.
|
|
if( red1 ) {
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
red1++;
|
|
#endif
|
|
}
|
|
if( green1 ) {
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
green1++;
|
|
#endif
|
|
}
|
|
if( blue1 ) {
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
blue1++;
|
|
#endif
|
|
}
|
|
cleanup_R1();
|
|
} else {
|
|
red1 = 0;
|
|
green1 = 0;
|
|
blue1 = 0;
|
|
}
|
|
}
|
|
|
|
return CRGB( red1, green1, blue1);
|
|
}
|
|
|
|
CRGB ColorFromPalette( const TProgmemRGBPalette16& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
|
|
{
|
|
// hi4 = index >> 4;
|
|
uint8_t hi4 = lsrX4(index);
|
|
uint8_t lo4 = index & 0x0F;
|
|
|
|
CRGB entry = FL_PGM_READ_DWORD_NEAR( &(pal[0]) + hi4 );
|
|
|
|
|
|
uint8_t red1 = entry.red;
|
|
uint8_t green1 = entry.green;
|
|
uint8_t blue1 = entry.blue;
|
|
|
|
uint8_t blend = lo4 && (blendType != NOBLEND);
|
|
|
|
if( blend ) {
|
|
|
|
if( hi4 == 15 ) {
|
|
entry = FL_PGM_READ_DWORD_NEAR( &(pal[0]) );
|
|
} else {
|
|
entry = FL_PGM_READ_DWORD_NEAR( &(pal[1]) + hi4 );
|
|
}
|
|
|
|
uint8_t f2 = lo4 << 4;
|
|
uint8_t f1 = 255 - f2;
|
|
|
|
uint8_t red2 = entry.red;
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, f1);
|
|
red2 = scale8_LEAVING_R1_DIRTY( red2, f2);
|
|
red1 += red2;
|
|
|
|
uint8_t green2 = entry.green;
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, f1);
|
|
green2 = scale8_LEAVING_R1_DIRTY( green2, f2);
|
|
green1 += green2;
|
|
|
|
uint8_t blue2 = entry.blue;
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, f1);
|
|
blue2 = scale8_LEAVING_R1_DIRTY( blue2, f2);
|
|
blue1 += blue2;
|
|
|
|
cleanup_R1();
|
|
}
|
|
|
|
if( brightness != 255) {
|
|
if( brightness ) {
|
|
brightness++; // adjust for rounding
|
|
// Now, since brightness is nonzero, we don't need the full scale8_video logic;
|
|
// we can just to scale8 and then add one (unless scale8 fixed) to all nonzero inputs.
|
|
if( red1 ) {
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
red1++;
|
|
#endif
|
|
}
|
|
if( green1 ) {
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
green1++;
|
|
#endif
|
|
}
|
|
if( blue1 ) {
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
blue1++;
|
|
#endif
|
|
}
|
|
cleanup_R1();
|
|
} else {
|
|
red1 = 0;
|
|
green1 = 0;
|
|
blue1 = 0;
|
|
}
|
|
}
|
|
|
|
return CRGB( red1, green1, blue1);
|
|
}
|
|
|
|
|
|
CRGB ColorFromPalette( const CRGBPalette32& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
|
|
{
|
|
uint8_t hi5 = index;
|
|
#if defined(__AVR__)
|
|
hi5 /= 2;
|
|
hi5 /= 2;
|
|
hi5 /= 2;
|
|
#else
|
|
hi5 >>= 3;
|
|
#endif
|
|
uint8_t lo3 = index & 0x07;
|
|
|
|
// const CRGB* entry = &(pal[0]) + hi5;
|
|
// since hi5 is always 0..31, hi4 * sizeof(CRGB) can be a single-byte value,
|
|
// instead of the two byte 'int' that avr-gcc defaults to.
|
|
// So, we multiply hi5 X sizeof(CRGB), giving hi5XsizeofCRGB;
|
|
uint8_t hi5XsizeofCRGB = hi5 * sizeof(CRGB);
|
|
// We then add that to a base array pointer.
|
|
const CRGB* entry = (CRGB*)( (uint8_t*)(&(pal[0])) + hi5XsizeofCRGB);
|
|
|
|
uint8_t red1 = entry->red;
|
|
uint8_t green1 = entry->green;
|
|
uint8_t blue1 = entry->blue;
|
|
|
|
uint8_t blend = lo3 && (blendType != NOBLEND);
|
|
|
|
if( blend ) {
|
|
|
|
if( hi5 == 31 ) {
|
|
entry = &(pal[0]);
|
|
} else {
|
|
entry++;
|
|
}
|
|
|
|
uint8_t f2 = lo3 << 5;
|
|
uint8_t f1 = 255 - f2;
|
|
|
|
uint8_t red2 = entry->red;
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, f1);
|
|
red2 = scale8_LEAVING_R1_DIRTY( red2, f2);
|
|
red1 += red2;
|
|
|
|
uint8_t green2 = entry->green;
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, f1);
|
|
green2 = scale8_LEAVING_R1_DIRTY( green2, f2);
|
|
green1 += green2;
|
|
|
|
uint8_t blue2 = entry->blue;
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, f1);
|
|
blue2 = scale8_LEAVING_R1_DIRTY( blue2, f2);
|
|
blue1 += blue2;
|
|
|
|
cleanup_R1();
|
|
|
|
}
|
|
|
|
if( brightness != 255) {
|
|
if( brightness ) {
|
|
brightness++; // adjust for rounding
|
|
// Now, since brightness is nonzero, we don't need the full scale8_video logic;
|
|
// we can just to scale8 and then add one (unless scale8 fixed) to all nonzero inputs.
|
|
if( red1 ) {
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
red1++;
|
|
#endif
|
|
}
|
|
if( green1 ) {
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
green1++;
|
|
#endif
|
|
}
|
|
if( blue1 ) {
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
blue1++;
|
|
#endif
|
|
}
|
|
cleanup_R1();
|
|
} else {
|
|
red1 = 0;
|
|
green1 = 0;
|
|
blue1 = 0;
|
|
}
|
|
}
|
|
|
|
return CRGB( red1, green1, blue1);
|
|
}
|
|
|
|
|
|
CRGB ColorFromPalette( const TProgmemRGBPalette32& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
|
|
{
|
|
uint8_t hi5 = index;
|
|
#if defined(__AVR__)
|
|
hi5 /= 2;
|
|
hi5 /= 2;
|
|
hi5 /= 2;
|
|
#else
|
|
hi5 >>= 3;
|
|
#endif
|
|
uint8_t lo3 = index & 0x07;
|
|
|
|
CRGB entry = FL_PGM_READ_DWORD_NEAR( &(pal[0]) + hi5);
|
|
|
|
uint8_t red1 = entry.red;
|
|
uint8_t green1 = entry.green;
|
|
uint8_t blue1 = entry.blue;
|
|
|
|
uint8_t blend = lo3 && (blendType != NOBLEND);
|
|
|
|
if( blend ) {
|
|
|
|
if( hi5 == 31 ) {
|
|
entry = FL_PGM_READ_DWORD_NEAR( &(pal[0]) );
|
|
} else {
|
|
entry = FL_PGM_READ_DWORD_NEAR( &(pal[1]) + hi5 );
|
|
}
|
|
|
|
uint8_t f2 = lo3 << 5;
|
|
uint8_t f1 = 255 - f2;
|
|
|
|
uint8_t red2 = entry.red;
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, f1);
|
|
red2 = scale8_LEAVING_R1_DIRTY( red2, f2);
|
|
red1 += red2;
|
|
|
|
uint8_t green2 = entry.green;
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, f1);
|
|
green2 = scale8_LEAVING_R1_DIRTY( green2, f2);
|
|
green1 += green2;
|
|
|
|
uint8_t blue2 = entry.blue;
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, f1);
|
|
blue2 = scale8_LEAVING_R1_DIRTY( blue2, f2);
|
|
blue1 += blue2;
|
|
|
|
cleanup_R1();
|
|
}
|
|
|
|
if( brightness != 255) {
|
|
if( brightness ) {
|
|
brightness++; // adjust for rounding
|
|
// Now, since brightness is nonzero, we don't need the full scale8_video logic;
|
|
// we can just to scale8 and then add one (unless scale8 fixed) to all nonzero inputs.
|
|
if( red1 ) {
|
|
red1 = scale8_LEAVING_R1_DIRTY( red1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
red1++;
|
|
#endif
|
|
}
|
|
if( green1 ) {
|
|
green1 = scale8_LEAVING_R1_DIRTY( green1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
green1++;
|
|
#endif
|
|
}
|
|
if( blue1 ) {
|
|
blue1 = scale8_LEAVING_R1_DIRTY( blue1, brightness);
|
|
#if !(FASTLED_SCALE8_FIXED==1)
|
|
blue1++;
|
|
#endif
|
|
}
|
|
cleanup_R1();
|
|
} else {
|
|
red1 = 0;
|
|
green1 = 0;
|
|
blue1 = 0;
|
|
}
|
|
}
|
|
|
|
return CRGB( red1, green1, blue1);
|
|
}
|
|
|
|
|
|
|
|
CRGB ColorFromPalette( const CRGBPalette256& pal, uint8_t index, uint8_t brightness, TBlendType)
|
|
{
|
|
const CRGB* entry = &(pal[0]) + index;
|
|
|
|
uint8_t red = entry->red;
|
|
uint8_t green = entry->green;
|
|
uint8_t blue = entry->blue;
|
|
|
|
if( brightness != 255) {
|
|
brightness++; // adjust for rounding
|
|
red = scale8_video_LEAVING_R1_DIRTY( red, brightness);
|
|
green = scale8_video_LEAVING_R1_DIRTY( green, brightness);
|
|
blue = scale8_video_LEAVING_R1_DIRTY( blue, brightness);
|
|
cleanup_R1();
|
|
}
|
|
|
|
return CRGB( red, green, blue);
|
|
}
|
|
|
|
|
|
CHSV ColorFromPalette( const struct CHSVPalette16& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
|
|
{
|
|
// hi4 = index >> 4;
|
|
uint8_t hi4 = lsrX4(index);
|
|
uint8_t lo4 = index & 0x0F;
|
|
|
|
// CRGB rgb1 = pal[ hi4];
|
|
const CHSV* entry = &(pal[0]) + hi4;
|
|
|
|
uint8_t hue1 = entry->hue;
|
|
uint8_t sat1 = entry->sat;
|
|
uint8_t val1 = entry->val;
|
|
|
|
uint8_t blend = lo4 && (blendType != NOBLEND);
|
|
|
|
if( blend ) {
|
|
|
|
if( hi4 == 15 ) {
|
|
entry = &(pal[0]);
|
|
} else {
|
|
entry++;
|
|
}
|
|
|
|
uint8_t f2 = lo4 << 4;
|
|
uint8_t f1 = 255 - f2;
|
|
|
|
uint8_t hue2 = entry->hue;
|
|
uint8_t sat2 = entry->sat;
|
|
uint8_t val2 = entry->val;
|
|
|
|
// Now some special casing for blending to or from
|
|
// either black or white. Black and white don't have
|
|
// proper 'hue' of their own, so when ramping from
|
|
// something else to/from black/white, we set the 'hue'
|
|
// of the black/white color to be the same as the hue
|
|
// of the other color, so that you get the expected
|
|
// brightness or saturation ramp, with hue staying
|
|
// constant:
|
|
|
|
// If we are starting from white (sat=0)
|
|
// or black (val=0), adopt the target hue.
|
|
if( sat1 == 0 || val1 == 0) {
|
|
hue1 = hue2;
|
|
}
|
|
|
|
// If we are ending at white (sat=0)
|
|
// or black (val=0), adopt the starting hue.
|
|
if( sat2 == 0 || val2 == 0) {
|
|
hue2 = hue1;
|
|
}
|
|
|
|
|
|
sat1 = scale8_LEAVING_R1_DIRTY( sat1, f1);
|
|
val1 = scale8_LEAVING_R1_DIRTY( val1, f1);
|
|
|
|
sat2 = scale8_LEAVING_R1_DIRTY( sat2, f2);
|
|
val2 = scale8_LEAVING_R1_DIRTY( val2, f2);
|
|
|
|
// cleanup_R1();
|
|
|
|
// These sums can't overflow, so no qadd8 needed.
|
|
sat1 += sat2;
|
|
val1 += val2;
|
|
|
|
uint8_t deltaHue = (uint8_t)(hue2 - hue1);
|
|
if( deltaHue & 0x80 ) {
|
|
// go backwards
|
|
hue1 -= scale8( 256 - deltaHue, f2);
|
|
} else {
|
|
// go forwards
|
|
hue1 += scale8( deltaHue, f2);
|
|
}
|
|
|
|
cleanup_R1();
|
|
}
|
|
|
|
if( brightness != 255) {
|
|
val1 = scale8_video( val1, brightness);
|
|
}
|
|
|
|
return CHSV( hue1, sat1, val1);
|
|
}
|
|
|
|
|
|
CHSV ColorFromPalette( const struct CHSVPalette32& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
|
|
{
|
|
uint8_t hi5 = index;
|
|
#if defined(__AVR__)
|
|
hi5 /= 2;
|
|
hi5 /= 2;
|
|
hi5 /= 2;
|
|
#else
|
|
hi5 >>= 3;
|
|
#endif
|
|
uint8_t lo3 = index & 0x07;
|
|
|
|
uint8_t hi5XsizeofCHSV = hi5 * sizeof(CHSV);
|
|
const CHSV* entry = (CHSV*)( (uint8_t*)(&(pal[0])) + hi5XsizeofCHSV);
|
|
|
|
uint8_t hue1 = entry->hue;
|
|
uint8_t sat1 = entry->sat;
|
|
uint8_t val1 = entry->val;
|
|
|
|
uint8_t blend = lo3 && (blendType != NOBLEND);
|
|
|
|
if( blend ) {
|
|
|
|
if( hi5 == 31 ) {
|
|
entry = &(pal[0]);
|
|
} else {
|
|
entry++;
|
|
}
|
|
|
|
uint8_t f2 = lo3 << 5;
|
|
uint8_t f1 = 255 - f2;
|
|
|
|
uint8_t hue2 = entry->hue;
|
|
uint8_t sat2 = entry->sat;
|
|
uint8_t val2 = entry->val;
|
|
|
|
// Now some special casing for blending to or from
|
|
// either black or white. Black and white don't have
|
|
// proper 'hue' of their own, so when ramping from
|
|
// something else to/from black/white, we set the 'hue'
|
|
// of the black/white color to be the same as the hue
|
|
// of the other color, so that you get the expected
|
|
// brightness or saturation ramp, with hue staying
|
|
// constant:
|
|
|
|
// If we are starting from white (sat=0)
|
|
// or black (val=0), adopt the target hue.
|
|
if( sat1 == 0 || val1 == 0) {
|
|
hue1 = hue2;
|
|
}
|
|
|
|
// If we are ending at white (sat=0)
|
|
// or black (val=0), adopt the starting hue.
|
|
if( sat2 == 0 || val2 == 0) {
|
|
hue2 = hue1;
|
|
}
|
|
|
|
|
|
sat1 = scale8_LEAVING_R1_DIRTY( sat1, f1);
|
|
val1 = scale8_LEAVING_R1_DIRTY( val1, f1);
|
|
|
|
sat2 = scale8_LEAVING_R1_DIRTY( sat2, f2);
|
|
val2 = scale8_LEAVING_R1_DIRTY( val2, f2);
|
|
|
|
// cleanup_R1();
|
|
|
|
// These sums can't overflow, so no qadd8 needed.
|
|
sat1 += sat2;
|
|
val1 += val2;
|
|
|
|
uint8_t deltaHue = (uint8_t)(hue2 - hue1);
|
|
if( deltaHue & 0x80 ) {
|
|
// go backwards
|
|
hue1 -= scale8( 256 - deltaHue, f2);
|
|
} else {
|
|
// go forwards
|
|
hue1 += scale8( deltaHue, f2);
|
|
}
|
|
|
|
cleanup_R1();
|
|
}
|
|
|
|
if( brightness != 255) {
|
|
val1 = scale8_video( val1, brightness);
|
|
}
|
|
|
|
return CHSV( hue1, sat1, val1);
|
|
}
|
|
|
|
CHSV ColorFromPalette( const struct CHSVPalette256& pal, uint8_t index, uint8_t brightness, TBlendType)
|
|
{
|
|
CHSV hsv = *( &(pal[0]) + index );
|
|
|
|
if( brightness != 255) {
|
|
hsv.value = scale8_video( hsv.value, brightness);
|
|
}
|
|
|
|
return hsv;
|
|
}
|
|
|
|
|
|
void UpscalePalette(const struct CRGBPalette16& srcpal16, struct CRGBPalette256& destpal256)
|
|
{
|
|
for( int i = 0; i < 256; i++) {
|
|
destpal256[(uint8_t)(i)] = ColorFromPalette( srcpal16, i);
|
|
}
|
|
}
|
|
|
|
void UpscalePalette(const struct CHSVPalette16& srcpal16, struct CHSVPalette256& destpal256)
|
|
{
|
|
for( int i = 0; i < 256; i++) {
|
|
destpal256[(uint8_t)(i)] = ColorFromPalette( srcpal16, i);
|
|
}
|
|
}
|
|
|
|
|
|
void UpscalePalette(const struct CRGBPalette16& srcpal16, struct CRGBPalette32& destpal32)
|
|
{
|
|
for( uint8_t i = 0; i < 16; i++) {
|
|
uint8_t j = i * 2;
|
|
destpal32[j+0] = srcpal16[i];
|
|
destpal32[j+1] = srcpal16[i];
|
|
}
|
|
}
|
|
|
|
void UpscalePalette(const struct CHSVPalette16& srcpal16, struct CHSVPalette32& destpal32)
|
|
{
|
|
for( uint8_t i = 0; i < 16; i++) {
|
|
uint8_t j = i * 2;
|
|
destpal32[j+0] = srcpal16[i];
|
|
destpal32[j+1] = srcpal16[i];
|
|
}
|
|
}
|
|
|
|
void UpscalePalette(const struct CRGBPalette32& srcpal32, struct CRGBPalette256& destpal256)
|
|
{
|
|
for( int i = 0; i < 256; i++) {
|
|
destpal256[(uint8_t)(i)] = ColorFromPalette( srcpal32, i);
|
|
}
|
|
}
|
|
|
|
void UpscalePalette(const struct CHSVPalette32& srcpal32, struct CHSVPalette256& destpal256)
|
|
{
|
|
for( int i = 0; i < 256; i++) {
|
|
destpal256[(uint8_t)(i)] = ColorFromPalette( srcpal32, i);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
// replaced by PartyColors_p
|
|
void SetupPartyColors(CRGBPalette16& pal)
|
|
{
|
|
fill_gradient( pal, 0, CHSV( HUE_PURPLE,255,255), 7, CHSV(HUE_YELLOW - 18,255,255), FORWARD_HUES);
|
|
fill_gradient( pal, 8, CHSV( HUE_ORANGE,255,255), 15, CHSV(HUE_BLUE + 18,255,255), BACKWARD_HUES);
|
|
}
|
|
#endif
|
|
|
|
|
|
void nblendPaletteTowardPalette( CRGBPalette16& current, CRGBPalette16& target, uint8_t maxChanges)
|
|
{
|
|
uint8_t* p1;
|
|
uint8_t* p2;
|
|
uint8_t changes = 0;
|
|
|
|
p1 = (uint8_t*)current.entries;
|
|
p2 = (uint8_t*)target.entries;
|
|
|
|
const uint8_t totalChannels = sizeof(CRGBPalette16);
|
|
for( uint8_t i = 0; i < totalChannels; i++) {
|
|
// if the values are equal, no changes are needed
|
|
if( p1[i] == p2[i] ) { continue; }
|
|
|
|
// if the current value is less than the target, increase it by one
|
|
if( p1[i] < p2[i] ) { p1[i]++; changes++; }
|
|
|
|
// if the current value is greater than the target,
|
|
// increase it by one (or two if it's still greater).
|
|
if( p1[i] > p2[i] ) {
|
|
p1[i]--; changes++;
|
|
if( p1[i] > p2[i] ) { p1[i]--; }
|
|
}
|
|
|
|
// if we've hit the maximum number of changes, exit
|
|
if( changes >= maxChanges) { break; }
|
|
}
|
|
}
|
|
|
|
|
|
uint8_t applyGamma_video( uint8_t brightness, float gamma)
|
|
{
|
|
float orig;
|
|
float adj;
|
|
orig = (float)(brightness) / (255.0);
|
|
adj = pow( orig, gamma) * (255.0);
|
|
uint8_t result = (uint8_t)(adj);
|
|
if( (brightness > 0) && (result == 0)) {
|
|
result = 1; // never gamma-adjust a positive number down to zero
|
|
}
|
|
return result;
|
|
}
|
|
|
|
CRGB applyGamma_video( const CRGB& orig, float gamma)
|
|
{
|
|
CRGB adj;
|
|
adj.r = applyGamma_video( orig.r, gamma);
|
|
adj.g = applyGamma_video( orig.g, gamma);
|
|
adj.b = applyGamma_video( orig.b, gamma);
|
|
return adj;
|
|
}
|
|
|
|
CRGB applyGamma_video( const CRGB& orig, float gammaR, float gammaG, float gammaB)
|
|
{
|
|
CRGB adj;
|
|
adj.r = applyGamma_video( orig.r, gammaR);
|
|
adj.g = applyGamma_video( orig.g, gammaG);
|
|
adj.b = applyGamma_video( orig.b, gammaB);
|
|
return adj;
|
|
}
|
|
|
|
CRGB& napplyGamma_video( CRGB& rgb, float gamma)
|
|
{
|
|
rgb = applyGamma_video( rgb, gamma);
|
|
return rgb;
|
|
}
|
|
|
|
CRGB& napplyGamma_video( CRGB& rgb, float gammaR, float gammaG, float gammaB)
|
|
{
|
|
rgb = applyGamma_video( rgb, gammaR, gammaG, gammaB);
|
|
return rgb;
|
|
}
|
|
|
|
void napplyGamma_video( CRGB* rgbarray, uint16_t count, float gamma)
|
|
{
|
|
for( uint16_t i = 0; i < count; i++) {
|
|
rgbarray[i] = applyGamma_video( rgbarray[i], gamma);
|
|
}
|
|
}
|
|
|
|
void napplyGamma_video( CRGB* rgbarray, uint16_t count, float gammaR, float gammaG, float gammaB)
|
|
{
|
|
for( uint16_t i = 0; i < count; i++) {
|
|
rgbarray[i] = applyGamma_video( rgbarray[i], gammaR, gammaG, gammaB);
|
|
}
|
|
}
|
|
|
|
|
|
FASTLED_NAMESPACE_END
|